119 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесконтактная система зажигания: устройство и принцип действия схемы

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.


Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Как работает бесконтактная система зажигания

Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.

Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.

Принцип действия бесконтактной системы зажигания

Рассмотрим принцип действия бесконтактной системы зажигания на примере системы зажигания автомобилей ВАЗ 2108, 2109, 21099. Определим, откуда берется искра для поджига топливной смеси в камере сгорания и почему она проскакивает своевременно для каждого цилиндра.

Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099 включает в себя катушку зажигания, свечи зажигания, высоковольтные провода (бронепровода), трамблер с распределителем зажигания, датчиками-регуляторами опережения зажигания (центробежным и вакуумным) и датчиком Холла, также коммутатор и провода низкого напряжения.

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Откуда поступает ток в систему зажигания?

Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей и реле, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.

Принцип действия бесконтактной системы зажигания

— При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.

Датчик Холла и экран трамблера

— Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).

— Теперь работает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).

— Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.

— Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.

Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º (подробнее см. «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099»).

Примечания и дополнения

— При работе двигателя на высоких оборотах необходим еще более ранний угол опережения зажигания. Здесь помогает центробежный регулятор опережения зажигания, который за счет расхождения своих грузиков от центробежной силы при повышении оборотов вращения оси трамблера смещает пластину с экраном. Она раньше проходит через зазор в датчике Холла, импульс поступает на коммутатор с некоторым опережением и соответственно зажигание становится раньше (подробнее см. «Центробежный регулятор опережения зажигания»).

Работа центробежного регулятора опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

— При движении с нагрузкой (например, в гору) помогает вакуумный регулятор опережения зажигания. Он работает по такому же принципу, как и центробежный регулятор. Смещает пластину с экраном для опережения угла, но за счет разрежения возникающего за дроссельной заслонкой после нажатия на педаль «газа» (подробнее см. «Вакуумный регулятор опережения зажигания»).

Вакуумный регулятор опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.
Читать еще:  Ошибка 0171 бедная смесь причины калина – Все о Лада Гранта

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Схема контактно транзисторного зажигания в автомобиле

Контактно-транзисторная система зажигания — это переходной этап между контактным и бесконтактным электронным вариантами систем зажигания. Она лишена основного недостатка своего предшественника — возможности подгорания и износа контактов прерывателя, которые коммутируют цепь с индуктивностью и значительной силой тока. Схема контактно-транзисторной системы зажигания предусматривает коммутацию первичной цепи обмотки возбуждения при помощи транзистора, который управляется контактами прерывателя. Более того, с началом использования такой системы зажигания появился новый блок — электронный коммутатор, объединяющий в себе коммутирующий транзистор и элементы схемы его управления.

Схема контактно-транзисторной системы зажигания предусматривает наличие следующих элементов:

  • аккумуляторной батареи напряжением 1,2 В (на рисунку обозначенная цифрой 1);
  • зажима стартера (цифра 2);
  • замка (включателя) зажигания (3);
  • дополнительных резисторов, изготовленных из константановой проволоки (4);
  • транзисторного коммутатора, дополненного электрическим конденсатором (5);
  • германиевого диода (8);
  • транзистора (9);
  • резисторов, имеющих сопротивление в 20 Ом (6 и 10);
  • импульсного трансформатора с двумя обмотками: первичной (11) и вторичной (12);
  • стабилитрона (22);
  • прерывателя, имеющего подвижный (под номером 14) и неподвижный (под номером 15) контакты, а также кулачковую муфту (21);
  • распределителя (16), имеющего токоразносную пластину (17);
  • свечей (18) и катушки (19) зажигания;
  • помехоподавительного сопротивления (20).

Зажим «Р» соединен с подвижным контактом прерывателя, зажим «К» — надежно соединен с зажимом катушки зажигания, «М» — соединен с массой посредством многожильного провода, а зажим, который не имеет обозначения — с соответствующим зажимом этой же катушки.

Принцип работы контактно транзисторного зажигания

Принцип работы контактно-транзисторной системы зажигания нельзя назвать слишком простым, тем более, что он имеет свои, специфические особенности. Когда зажигание выключено или контакты прерывателя разомкнуты, транзистор находится в закрытом положении, но как только ситуация меняется (зажигание включается, либо контакты прерывателя замыкаются), появляется цепь тока, отвечающего за управление транзистором.

Она имеет следующий вид: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – зажим транзисторного коммутатора (тот, который без обозначения) – вторичная обмотка импульсного трансформатора 12 – резистор 10 – эмиттер – база транзистора – зажим 13, к которому подключена первичная обмотка импульсного трансформатора 11 – подвижный 14 – неподвижный 15 контакты прерывателя – «масса» – «–» аккумуляторной батареи.

Как только управляющий ток преодолеет эмиттер, базу транзистора сопротивления перехода, коллектор начнет снижаться и транзистор откроется.

Появляется еще одна цепь рабочего тока с низким напряжением: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – эмиттер – база – коллектор – зажим «М» транзисторного коммутатора – «масса» – «–» батареи. Учитывая небольшую силу сопротивления транзистора в первичной обмотке катушки зажигания, неудивительно, что появляется сильное магнитное поле, способствующее получению более высокого напряжения во вторичной обмотке.

Вращение коленвала заставляет грань кулачковой муфты воздействовать на рычаг подвижного контакта, из-за чего прерывается цепь управляющего тока и транзистор снова закрывается. Соответственно, цепь рабочего тока низкого напряжения так же прерывается.

В это же время, во второй обмотке, индуцируется ЭДС взаимной индукции, влияние которой полностью противоположно направлению рабочего тока низкого напряжения. Вследствие этого явления скорость закрытия транзистора увеличивается. Резкое прерывание тока в первичной катушке зажигания ведет к тому, что ее магнитные силовые линии, при исчезании пересекают витки вторичной обмотки и в них индуцируется ток высокого напряжения (до 30 000 В).

Образовавшийся ток проходит по проводу напряжения, минует сопротивление и попадает на центральную клемму распределителя. Затем, посредством токоразносной пластины он подводится к боковому электроду и через провод поступает на свечи зажигания. После этого и происходит воспламенение горючей смеси. Получается, что ток ввысокого напряжения никак не взаимодействует с транзистором, что предупреждает его «пробой» и повышает надежность системы зажигания в целом.

Магнитные силовые линии индуцируют в первичной обмотке катушки зажигания ток самоиндукции, напряжением до 100 В. Вот он то как раз и может повредить («пробить») транзистор. Поэтому, параллельно первичной обмотке катушки зажигания последовательно размещены диод и стабилитрон, со встречным направлением прямых проводимостей.

Когда контакты прерывателя размыкаются, в первичной обмотке импульсного трансформатора, также начинает индуцироваться ЭДС самоиндукции. Ею заряжается конденсатор и передает этот заряд резистору, который, в свою очередь, преобразует электрическую энергию в тепловую.

Электрический конденсатор функционирует параллельно генератору и АКБ, защищая транзистор от импульсных перенапряжений, которые появляются в цепи «генератор — батарея» в тех случаях, когда АКБ выключается, обрывается одна из фаз обмотки статора генератора переменного тока или же обрывается провод, который соединяет корпус генератора с регулятором напряжения. В этой ситуации конденсатор будет заряжаться, что снизит напряжение в цепи приборов и предотвратит «пробой» транзистора.

Читать еще:  Как правильно выбрать тормозные колодки: на что обратить внимание

В чем отличие от обычной системы

Основным элементом контактно-транзисторной системы, который помог новой схеме улучшить изначальные характеристики, является транзистор. Кроме того, именно он поспособствовал установке нового узла — коммутатора. Характерная особенность транзистора — небольшой ток, который поступает на управление (в базу) и дает возможность управления током куда большей величины.

Несмотря на незначительное, на первый взгляд, изменение принципа работы, контактно-транзисторная система зажигания приобрела новые свойства, недоступные ранее классической системе. Так, что касается рабочего процесса, то основным отличием от классического варианта, является прямое воздействие прерывателя на базу транзистора, а не на бобину, как это было раньше.

Во всем же остальном, контактно-транзисторная схема работает также как и классическая система зажигания. Прерывание тока в первичной обмотке бобины способствует появлению высоковольтного напряжения во вторичной. Если не рассматривать устройство коммутатора и его подключение слишком детально, то нельзя не отметить, что даже в таком упрощенном варианте транзисторное зажигание обладает рядом преимуществ, о которых и пойдет речь далее.

Преимущества и недостатки контактно транзисторного зажигания

Среди положительных моментов использования контактно-транзисторных систем зажигания выделяют:

  • Получение сравнительно больших выходных напряжений, благодаря которым увеличивается сила тока в первичной обмотке, а контакты прерывателя испытывают меньшую электрическую нагрузку.
  • Облегченный запуск мотора и повышенный уровень его надежности на малых и больших оборотах;
  • Более длительный срок службы контактов прерывателя за счет уменьшения значения проходящего через них тока (контакты также меньше подгорают).
  • Снижение средних эксплуатационных расходов топлива.

Тем не менее, не все так хорошо, как может показаться на первый взгляд. Контактно-транзисторная система зажигания имеет и ряд определенных недостатков, которые вызваны использованием прерывателя. Система начинает создавать искровой заряд в то время, когда в обмотке бобины разрывается цепь прохождения тока. Величина тока, которая поступает в базу транзистора, существенно сказывается на его работе, а уменьшение тока из-за качества контактов отрицательно сказывается на работе всей системы.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Бесконтактная система зажигания: принцип работы

Рассмотрев устройство и составные элементы, можно перейти к тому, как работает бесконтактное зажигание. Прежде всего, когда вращается коленвал двигателя, происходит формирование импульсов напряжения от датчика-распределителя. Импульсы передаются на транзисторный коммутатор.

В свою очередь, коммутатор формирует импульсы тока в цепи первичной обмотки катушки зажигания. В тот момент, когда происходит прерывание тока, осуществляется индуцирование тока высокого напряжения на вторичной обмотке катушки.

Когда обороты коленвала увеличиваются, происходит регулировка УОЗ (угол опережения зажигания) за счет центробежного регулятора опережения зажигания. Если меняется нагрузка на мотор, угол опережения зажигания меняется за счет вакуумного регулятора опережения зажигания.

Контактная система зажигания недостатки.

Контактная система зажигания имеет ряд недостатков. Самый большой из них подгорание контактов, для предотвращение которого необходимо снижение тока первичной обмотки катушки. По этой причине при контактной системе зажигания имеется ограничение вторичного напряжения. Кроме этого при повышении числа оборотов происходит снижение вторичного напряжения, так как снижается время замкнутого состояния контактов. По этой же причине снижается вторичное напряжение при увеличении числа цилиндров. В процессе развития эти недостатки устранялись в других системах, контактно-транзисторной и бесконтактной.

Конструкция и принцип действия БСЗ

Так какое зажигание лучше? Перед тем, как мы расскажем об установке и регулировке электронного зажигания своими руками, давайте рассмотрим принцип работы БСЗ и ее конструкцию. Итак, бесконтактная система зажигания представляет собой достаточно сложное по конструкции устройство, которое состоит из множества деталей.

Среди основных компонентов следует выделить:

  • катушка;
  • вакуумный и центробежный регуляторы напряжения;
  • коммутаторное устройство;
  • контроллер сигналов;
  • высоковольтные провода;
  • свечи;
  • аккумуляторная батарея.

Это основные элементы, который включает в себя комплект бесконтактного зажигания. Что касается принципа функционирования, то он довольно простой. Когда водитель поворачивает ключ в замке, на монтажный блок начинает поступать напряжение и здесь же оно распределяется между стартером, катушкой и прочими потребителями тока авто. Коленчатый вал вступает в движение, в результате чего контроллер сигналов начинает передавать импульсы на коммутаторный узел. Предназначение последнего заключается в остановке подачи напряжения на обмотки катушки, благодаря чему ан вторичных витках образуется ток более высокого напряжения.

Схема БСЗ с обозначением элементов

Этот ток позволяет генерировать сильную искру на свечи, которая впоследствии используется для воспламенения горючей смеси. Ток поступает на свечи в определенном порядке, в соответствии с положением коленчатого вала. Данный процесс осуществляется под контролем регуляторов, которые могут определять не только частоту, с которой движется вал, но и степень нагрузки на силовой агрегат. Если бесконтактная система зажигания будет отрегулирована должным образом, на свечах будет образовываться свеча высокой мощности, что обеспечит нормальной возгорание и сгорание горючей смеси.

Бесконтактный датчик: кто таков и чем полезен?

На самом деле бесконтактная система зажигания принцип работы которой мы сегодня рассматриваем, конструктивно не сильно отличается от своих предшественников.

Алгоритм функционирования остался прежним, но она напрочь лишилась каких-либо механических контактов в низковольтной части. Чтобы разобраться с тем, как всё работает, давайте взглянем на устройство бесконтактной системы. Она состоит из таких элементов:

  • аккумуляторная батарея и генератор;
  • замок зажигания;
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель;
  • регуляторы угла опережения зажигания;
  • свечи.
Читать еще:  Иллюстрации, относящиеся к измерениям геометриии кузова

Как Вы могли заметить, многие из этих элементов уже знакомы нам. Принципиально новым в списке узлов бесконтактной системы зажигания является датчик импульсов, который заменил собой прерыватель, присутствующий как в классической контактной схеме, так и в её более совершенном транзисторном варианте.

Он при помощи специального элемента отслеживает частоту вращения коленвала мотора. В роли такого элемента может быть датчик Холла (наиболее распространённый вариант), который генерирует электрические импульсы в зависимости от изменения магнитного поля, оптический датчик или индуктивный.

Созданные им импульсы, генерирующиеся именно в те моменты, когда нужно создать искру в свече, попадают в коммутатор.

Если Вы читали предыдущие статьи, то помните, что основу коммутатора составляет транзистор – электронный прибор, который может управлять большими токами при помощи малых.

Именно на него и воздействуют те самые электрические импульсы от датчика, а он, в свою очередь, контролирует работу катушки зажигания, которая преобразовывает низкое напряжение бортовой сети в гораздо более высокое, необходимое для образования искры (около 30 000 Вольт).

Кстати, датчик импульсов объединён в один корпус с распределителем и вместе они образуют единое устройство, которое называют датчик-распределитель.

Виды СЗ

Система зажигания служит для воспламенения в необходимый момент топливовоздушной смеси, находящейся в цилиндрах двигателя.

Применяемые СЗ можно разделить на три основных типа:

  • Контактные;
  • Бесконтактные;
  • Контактно-транзисторные.

Первый и третий тип особого интереса для нас не представляют, поскольку на ВАЗ 2109 используется бесконтактная или бесконтактно-транзисторная система.

Применять такие схемы начали еще в середине 80-х годов прошлого века. С течением времени инженерам удалось повысить эффективность, работоспособность и надежность.

Принцип действия

Принцип действия системы зажигания, установленной на ВАЗ 2109, выглядит следующим образом:

  • Датчик положения коленвала выполняет свои основные задачи, посылает сигнал на контроллеры;
  • Контроллер обрабатывает полученную информацию и проводит расчет последовательности включения в работу катушек зажигания;
  • Катушка создает две искры — воспламеняющую и холостую.

Метод холостой искры подразумевает создание искр одновременно в двух свечах зажигания. Одна воспламеняющая, а вторая холостая, поскольку бьет в такт выпуска отработанных газов на другой свечке. Таким образом, цилиндры, где одновременно образуются искры, создают пары — 1 и 4 цилиндры и 2 и 3 цилиндры.

Катушка

Основные преимущества

Используемая система зажигания для девяток отличается неплохими показателями надежности, хотя вырабатывает энергию до 50 кДж, а напряжение пробоя порой может достигать отметки 30 кВ и больше. БСЗ ценят за высокий КПД.

Можно выделить несколько главных преимуществ, которыми характеризуются бесконтактные системы зажигания.

Преимущества

Особенности

СЗ работает с датчиком Холла

Из-за этого на параметры энергии искры не влияют напряжение в электросети, частота работы двигателя. Это обусловлено тем, что период времени концентрации энергии в катушке зажигания всегда неизменный. Так обеспечивается высокий КПД схемы

Отсутствует механическое взаимодействие между контактами

Это способствует отсутствию загрязненности, обгорания контактов, потому чистить их не приходится

Не нужно регулировать положение контактов

Это объясняется просто — их нет в СЗ ВАЗ 2109

Минимальные механические взаимодействия деталей

Такой фактор способствует отсутствию вибраций ротора, резонанса, неравномерного распределения искры по свечам зажигания

Энергия в свечи постоянно повышенная

Она может достигать 50 Дж, что позволяет избегать сбоев при воспламенении топливовоздушной смеси в цилиндрах. Особенно хорошо это видно при разгоне автомобиля

Экономичность и экологичность

Применение новой СЗ позволило улучшить экономию топлива примерно на 5 процентов, а также на 20 процентов снизить количество выбросов СО

Стабильный запуск холодного двигателя

Даже если АКБ разрядится до 6В, запустить мотор все равно можно будет без проблем. Этим БСЗ существенно отличается от других систем зажигания, которые не могут похвастаться такой стабильностью.

Схема

Как правильно подобрать и заменить катушку зажигания

Катушка зажигания подвергается воздействию высоких напряжений, значительных механических и тепловых нагрузок, поэтому в ней довольно часто возникают различные неисправности. Наиболее часто приходится сталкиваться с обрывами обмоток и, наоборот, замыканиями их витков. Данные неисправности проявляются сложным запуском двигателя, его неравномерной работой или полным выходит из строя. Если в моторе применяется общая катушка, то при ее неисправности запуск будет полностью невозможен, а при сдвоенных или индивидуальных катушках будет нарушена работа одного или нескольких цилиндров. При появлении подозрений на неисправность катушки, можно произвести простейшую диагностику.

В первую очередь, катушку зажигания следует снять и осмотреть на предмет наличия повреждений. Затем нужно проверить сопротивление ее обмоток. Как правило, сопротивление первичной обмотки невелико — в пределах 0,4-4 Ом, а сопротивление вторичной обмотки намного выше — в пределах 5-15 кОм. Если омметр показывает значительно меньшее сопротивление, то в обмотке наблюдается замыкание витков, а если сопротивление бесконечно, то в обмотке обрыв. В любом из этих случаев катушка не подложит ремонту, а просто меняется на новую.

На замену следует брать катушку зажигания того же типа и модели (и каталожного номера), что были установлены на автомобиле ранее — только так можно гарантировать, что деталь встанет на свое место и создаст высоковольтные импульсы с необходимыми характеристиками. Замена катушки должна выполняться в соответствии с инструкцией по ремонту автомобиля, обычно эта работа сводится к отключению от катушки всех проводов и ее демонтажу с последующей установкой новой детали. При этом необходимо снять клемму с аккумулятора, а в некоторых автомобилях придется убрать и некоторые мешающие детали. При верном выборе катушки и ее замене вся система зажигания будет надежно работать на всех режимах.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты