14 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Непосредственный впрыск в камеру сгорания. что это и для чего он нужен?

GDI двигатели: плюсы и минусы двигателей GDI, что это такое

Gasoline Direct Injection, или же более распространенная аббревиатура GDI, скрывает под собой инжекторную систему подачи топлива для бензиновых двигателей с непосредственным (прямым) впрыском топлива. Конструкция устройств у разных производителей идет под разными аббревиатурами. Mitsubishi (а также KIA и Hyndai) дали название GDI, Volkswagen – FSI, Ford – Ecoboost, Toyota – 4D, Mercedes, BMW и некоторые другие скрывают понятие «непосредственный впрыск» в индексе двигателя. При таких системах подачи топливные форсунки вставлены в головку блока цилиндров, и распыление происходит сразу в каждую камеру сгорания, минуя впускной коллектор и впускные клапана. Топливо подается под большим давлением в цилиндр, чему способствует топливный насос высокого давления (ТНВД).

Что такое система впрыска GDI?

Бензиновый двигатель — легко пускается, разгоняется быстро, но любит «покушать». Дизель не столь быстроходен, имеет повышенный уровень шума, зато потребляет меньше топлива. Вот бы совместить их. Такими качествами обладают двигатели GDI с непосредственным впрыском топлива.

Чтобы объяснить принцип работы двигателя GDI с непосредственным впрыском рассмотрим теорию двигателей.

Теория работы двигателя

Чтобы топливо сгорело, нужен воздух. Но надо смешать с топливом столько воздуха, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14,7:1, то есть на 1 грамм бензина нужно 14,7 грамма воздуха. Смесь, в которой воздуха больше, чем нужно — называется бедной, а та, в которой воздуха меньше, чем нужно (то есть больше топлива) — называется богатой.

Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает в трубу».

Воздух нужен не только для сгорания. Чем выше давление в цилиндре перед воспламенением смеси, тем больше отдача двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска: тем больше потом будет давление. А вот теперь пора разбираться, почему дизель экономичнее.

Вспомним, как работает ДВС. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем она сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и от этого еще и нагревается. К концу сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя: для дизеля нормальная степень сжатия — 18, а у бензиновых — едва достигает 12. А выше давление в цилиндре — выше и эффективность.

А если поднять степень сжатия в бензиновом двигателе? Пробовали. Но выше 12 не получается. Потому что есть такие явления, как детонация и калильное зажигание.

Детонация — очень быстрое сгорание топлива в точках, удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук. Калильное зажигание — преждевременное (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания.

Длительная работа с детонацией и калильным зажиганием недопустима: мотор быстро выйдет из строя. Детонацию и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (АИ-98), но выше степени сжатия 12 его «не хватает».

Если мы хотим сделать бензиновый двигатель экономичным, «эластичным» и при этом более мощным, то мы должны избавить его от детонации и научить «питаться» бедной смесью. Вот если бы топливо впрыскивалось непосредственно в цилиндр.

Как работает двигатель GDI?

Двигатель GDI напоминает по конструкции и обычный бензиновый, и дизель. В каждом цилиндре присутствует и свеча зажигания, и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа. Форсунка обеспечивает два различных режима впрыскивания топлива.

В работе GDI различаются три возможных режима в зависимости от режима движения. Работа на сверх бедных смесях. Этот режим используется при малых нагрузках: при спокойной городской езде и загородном движении на скоростях до 120 км/ч. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия.

В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Впрыск топлива осуществляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и, испаряясь, охлаждает при этом воздух в цилиндре. Благодаря охлаждению снижается вероятность детонации и калильного зажигания.

Еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда двигаясь на малых оборотах, резко нажимается педаль акселератора. Если двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа.

Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверх бедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до «богатого» 12:1. А на детонацию времени не остается.

Что в итоге? Степень сжатия удалось поднять до 12—12,5, двигатель устойчиво работает на очень бедной смеси. По сравнению с «обычным» бензиновым двигателем, GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа.

Преимущества двигателя FSI

Двигатель FSI имеет ряд положительных характеристик, которые выгодно отличают его от двигателей других систем.

  • Благодаря наличию электромагнитного клапана очень точно определяется момент подачи топлива в цилиндр.
  • Данная система обеспечивает хорошие тяговые показатели на средних и малых оборотах.
  • Сравнивая экономические показатели двигателя FSI с другими типами моторов, экономия бензина доходит до 25%.
  • Выхлопные газы неоднократно проходят процесс рециркуляции, это понижает их токсичность.

Моторы с непосредственным впрыском известны своими капризами при запуске.

Причиной могут быть закоксованные клапана, отсутствие компрессии. Но есть также технологическая особенность: из-за ухода тепловых зазоров при температурах ниже -25°С, ТНВД не может развить номинальное давление, запуск не происходит. По мере увеличения пробега проблема нарастает: при холодном пуске мотор начинает трястись, не заводится.

Сюда же добавляем низкое тепловыделение на холостых, ведь мотор работает на сверхобедненной смеси. То есть, запустившись с трудом, двигатель очень долго выходит на рабочую температуру, сильно изнашивая ТНВД и форсунки. Бывают случаи, когда небольшой по объему мотор настолько остывает, что из печки идет холодный воздух. Рекомендации здесь те же – максимально поддерживать работоспособность узлов системы питания двигателя за счет коррекции топлива, поддержания тотальной чистоты бака, фильтров, топливопроводов, форсунок, камеры сгорания, впускного коллектора.

Итоги

Размышляя о сути вопроса в целом и сопоставляя данные, с уверенностью можно сказать одно: непосредственный впрыск в камеру сгорания – система гораздо более современная и перспективная, чем впрыск с распределением. При меньших тратах бензина характеристики движка улучшаются существенно. Жаль только, что на постсоветском пространстве многие потенциальные покупатели пугаются подобной системы впрыска. Наверное, такая ситуация связана в первую очередь с рассказами о высоких требованиях, предъявляемых системой к качеству бензина и дороговизной ремонта и обслуживания GDI.

Виды дизельных агрегатов

В современном автомобилестроении используются два типа дизельных силовых установок:

  • двигатели с прямым впрыском;
  • дизели с раздельной камерой сгорания.

У дизельных агрегатов с прямым впрыском камера сгорания интегрирована в поршень. Горючее впрыскивается в пространство над поршнем, после чего направляется в камеру. Прямой впрыск топлива обычно используется на низкооборотных силовых установках с большим рабочим объемом, где имеются сложности с процессом воспламенения.

Более распространены сегодня дизельные моторы с раздельной камерой. Впрыск горючей смеси производится не в пространство над поршнем, а в дополнительную полость, которая имеется в головке цилиндра. Такой способ оптимизирует процесс самовоспламенения. К тому же такой тип дизеля работает с меньшим шумом даже на самых высоких оборотах. Именно такие двигатели сегодня устанавливают на легковых автомобилях, кроссоверах и внедорожниках.

В зависимости от конструктивных особенностей дизельный силовой агрегат работает в четырехтактном и двухтактном циклах.

Четырехтактный цикл подразумевает следующие этапы работы силового агрегата:

  • Первый такт – это поворот коленвала на 180 градусов. Благодаря его движению открывается впускающий клапан, в результате чего воздух подается в полость цилиндра. После этого клапан резко закрывается. Одновременно с этим при определенном положении открывается и выхлопной (выпускающий) клапан. Момент одновременного открытия клапанов называют перекрытием.
  • Второй такт — это сжатие воздуха поршнем.
  • Третий такт — начало хода. Коленвал поворачивается на 540 градусов, топливно-воздушная смесь воспламеняется и сгорает при соприкосновении с форсунками. Выделяющаяся при горении энергия поступает в поршень и заставляет его двигаться.
  • Четвертый такт соответствует повороту коленвала до 720 градусов. Поршень поднимается вверх и выбрасывает через выпускной клапан отработавшие продукты горения.
Читать еще:  Замена масла в раздатке chevrolet niva. важно и своевременно

Двухтактный цикл обычно используется при запуске дизельного агрегата. Суть его заключается в том, что такты сжатия воздуха и начало рабочего процесса у него укорочены. При этом поршень выпускает отработавшие газы через специальные впускные окна во время своей работы, а не после того, как опустится вниз. После принятия исходного положения осуществляется продувка поршня, чтобы удалить остаточные явления от горения.

Что такое нагар?

В обычном двигателе с системой распределенного или многоточечного впрыска топливо впрыскивается во впускной канал каждого цилиндра непосредственно перед впускным клапаном — там оно смешивается с поступающим воздухом, и образовавшаяся смесь подается в цилиндр двигателя. Во время этого процесса топливо омывает впускные клапаны, удаляя окисленное топливо и грязь из всасываемого воздуха.

Напротив, система GDi впрыскивает топливо под высоким давлением непосредственно в камеру сгорания. Разбитая на мельчайшие капли и точно направленная топливовоздушная смесь улучшает качество сгорания, что позволяет повысить мощность и снизить количество выбросов. Недостатком этой системы, однако, является то, что топливо больше не проходит через клапаны и не очищает их, в результате чего на них образуется нагар.

Типы нагара

Со временем нагар накапливается на форсунках и клапанах и становится причиной нескольких проблем:

  • Форсунки. Нагар на кончике форсунки может препятствовать подаче топлива, в результате чего двигатель работает на обедненной смеси. Другими словами, топливная смесь содержит слишком много воздуха и слишком мало топлива. Это может стать причиной возникновения таких проблем, как неровная работа двигателя на холостых оборотах, пропуски зажигания, повышенный расход топлива и увеличение количества выбросов, а также повышенный риск детонации и преждевременное зажигание. Этот нагар обычно образуется сразу после остановки двигателя. Это означает, что он будет накапливаться быстрее при более коротких и более частых поездках.
  • Впускные клапаны. С течением времени на впускных клапанах также может накапливаться нагар, мешая им правильно открываться и закрываться. В результате этого ограничивается приток воздуха в цилиндры, снижается мощность двигателя и повышается расход топлива. Хотя нагар на впускных клапанах является нормальным побочным продуктом сгорания, он может накапливаться быстрее, если изношены направляющие или уплотнения клапанов, а также в автомобилях с изменяемыми фазами газораспределения, где клапаны открыты дольше и, следовательно, на них оседает большее количество частиц сажи.

Признаки появления нагара

Накопление нагара может проявляться несколькими способами, в том числе:

  • потеря мощности, особенно при движении на высокой скорости;
  • вялое ускорение;
  • при холодном запуске глохнет двигатель;
  • пропуски зажигания;
  • повышение расхода топлива;
  • включение индикатора проверки двигателя;
  • нестабильная работа двигателя;
  • вибрация в двигателе на холостых оборотах.

Предотвращение образования нагара

В то время как для автомобилей, оборудованных системой GDi, обслуживание требуется обычно при пробеге от 30 до 60 тыс. километров, регулярное промежуточное техническое обслуживание поможет предотвратить образование нагара:

  • Меняйте масло в соответствии с рекомендованными производителем интервалами и используйте указанное масло для оптимальной работы впускных клапанов.
  • Меняйте свечи зажигания при рекомендованном пробеге, чтобы уменьшить количество несгорающего топлива в камере сгорания.
  • Используйте качественное топливо с моющими присадками, чтобы не допускать образования нагара на деталях двигателя.
  • Добавляйте очиститель топливной системы для поддержания исправного состояния системы GDi.

Выявление образования нагара

К сожалению, многие автовладельцы не знают о необходимости регулярного техобслуживания, пока не станет слишком поздно, и не загорится индикатор проверки двигателя. В этом случае есть несколько простых процедур, которые вы можете выполнить для выявления образования нагара:

  • Считайте коды неисправностей с помощью диагностического прибора.
  • Выполните вакуумную диагностику двигателя на холостом ходу и при 2000 об/мин.
  • Выполните проверку двигателя на прорыв газов.
  • Проверьте фазы газораспределения.
  • Проверьте компрессию.
  • Выполните проверку цилиндров на наличие утечек.

Решение проблемы нагара

Но не волнуйтесь: если наличие нагара подтвердиться, это не значит, что все потеряно. Хотя существует несколько продуктов, которые, по утверждениям их производителей, удаляют нагар, единственный способ полностью от него избавиться — это разобрать компоненты и провести их ультразвуковую очистку. Наши ультразвуковые ванны Hartridge обеспечивают глубокую очистку всех поверхностей, включая труднодоступные выемки, более тщательную и более быструю по сравнению с другими методами.

Таким образом, по мере роста на дорогах числа автомобилей с двигателями, оборудованными системой GDi, будет расти и количество проблем, связанных с образованием нагара. Осознав суть этих проблем и способы их предотвращения, автомастерские смогут предложить своим клиентам комплексное обслуживание систем GDi в течение всего срока службы автомобиля.

Моновпрыск

На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.

Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.

Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).

Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.

Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.

Mono-Jetronic: конструктивные элементы

  • Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
  • Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
  • Дроссельная заслонка. Регулятор объема поступающего воздуха.
  • Привод. Он ответственный за работу дроссельной заслонки.
  • Электронный блок управления. «Мозг», синхронизатор.

Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).

Распределённый впрыск

В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.

Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.

Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.

В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».

Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.

Дискретный впрыск топлива

Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.

Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).

L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .

Читать еще:  Стоит ли покупать Ладу Калину: достоинства и недостатки, отзывы владельцев авто

У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров
Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.

Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.

Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch.
Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.

Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.

Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).

Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.

Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.

Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.

А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.

Системы непосредственного впрыска

Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска.
Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.

  • Это важно для достижения топливной экономичности.
  • Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.
  • Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
  • Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
  • Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.

Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.

Интересная деталь! Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.

Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.

Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.

В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.

Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.

Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.

Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.

Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.

Совершенство непосредственности: 80 лет эволюции моторов с прямым впрыском

Непосредственный впрыск для многих автомобилистов, особенно не понаслышке знакомых с аббревиатурами GDI и FSI, стал настоящей страшилкой. Топливные насосы ценой в полмотора, вечно засоряющиеся форсунки, сопутствующие проблемы… Разбираемся, зачем вообще на автомобилях внедрили прямой впрыск в камеры сгорания и как он развивался на протяжении последних десятилетий.

Битва в воздухе

Так уж получилось, что первые двигатели внутреннего сгорания были рассчитаны на работу на газовоздушной смеси, а вовсе не на жидкости. И именно возможность создания простейшего устройства испарения топлива позволила бензиновым моторам завоевать себе главенствующее место в мире, потеснив и паровые машины, и дизели. Бензиновые моторы и сейчас порой ошибочно называют «карбюраторными», отдавая дань той схеме питания, с которой они родились и развивались почти столетие.

В противоположность карбюраторным моторам дизели не называли «моторами с непосредственным впрыском» – ограничивались классификацией по типу топлива. И очень правильно сделали, ведь перед Второй мировой непосредственный впрыск массово появился на бензиновых авиационных моторах. Внедряли такие системы питания для повышения надежности работы компрессорных двигателей при больших ускорениях и при сильном изменении как атмосферного давления, так и давления наддува. Об экономичности, заметим, тогда задумывались мало.

Первым «непосредственным» мотором считается немецкий Daimler -Benz DB601, который испытали еще в 1935 году, а в серию он пошел после 1937-го. Кстати, производили его в Италии – как Alfa Romeo , а в Японии – как Kawasaki . Его наследник DB 605 оснащался непосредственным впрыском, а заодно и турбонаддувом, прямо как современные моторы TSI . И имел очень высокую для тех лет степень сжатия – 7,3/7,5.

Эти V -образные 12-цилиндровые двигатели применялись на самых массовых немецких истребителях второй мировой – Me 109 в различных вариантах, и обеспечивали им очень высокую мощность и высотность. Не в последнюю очередь благодаря удачному сочетанию системы питания и наддува. Лицензию на DB 601 дали и другим производителям авиамоторов «стран Оси», и к немецкому опыту приобщились моторостроители Италии и Японии.

По другим данным, первенцем все же является Jumo 210G, но сейчас это не столь принципиально. В итоге СССР, США и Англия от немцев немного отстали, но свои моторы с такой системой впрыска сделали и войну выиграли. А «непосредственный» мотор конструкции Швецова, АШ-82ФН, послужил основой для двигателей пассажирских Ил-12/Ил-14. Кстати, на этой модификации впрыск был комбинированным – для улучшения пусковых качеств.

На фото двигатель АШ-82ФН

Что роднит все авиационные моторы с непосредственным впрыском этого поколения? Высокая сложность обслуживания и эксплуатации. Но для военных нет такого слова, как «дорого», да и слово «сложно» тоже их не волнует, если итоговая надежность работы и характеристики их устраивают. Победа нужна любой ценой – даже в технике.

Бензин с примесью масла для смазки ТНВД (топливного насоса высокого давления), тонкая настройка топливной аппаратуры и ресурс всего мотора в пределах 200-400 часов – это не страшно. Главное – устойчивая работа при высочайших перегрузках, когда пилот уже теряет зрение, а конструкция трещит по швам, работа в перевернутом положении, работа при температуре воздуха -50 °C и при жаре +40 °C. Да к тому же карбюраторы очень плохо сочетались с системной наддува, которая обязательно применялась на высотных истребителях и бомбардировщиках, так что непосредственный впрыск был очень удачной заменой.

Попытка номер раз, ТНВД и насос-форсунки

После войны непосредственный впрыск «на гражданке» не прижился – очень известный Mercedes 300 SL считать «обычной машиной» как минимум странно. Borgward недолго выпускал свой 700 Sport с двухтактным (!) мотором непосредственного впрыска. Зато гоночные автомобили оценили новые возможности: и Ferrari, и Mercedes успешно опробовали новшества.

Знаменитый гонщик Хуан Мануэль Фанхио на Mercedes Typ W 196 с непосредственным впрыском выиграл чемпионат мира Формулы-1 1954 и 1955 годов. Правда, подавляющее преимущество над соперниками дал вовсе не впрыск, а возможности команды и десмодромный ГРМ рядного восьмицилиндрового мотора с рабочими оборотами 8 500 в минуту. А после разрешения в регламенте Формулы наддува непосредственный впрыск применили и в Ferrari . И на протяжении нескольких лет успели опробовать какое-то количество конструктивных схем системы питания. Надо сказать, весьма успешно.

Суть конструкции мало изменилась с сороковых годов: все тот же практически «дизельный» ТНВД и простые форсунки. Варьировалось только конструктивное исполнение: форсунки могли быть боковыми с верхним, нижним или центральным расположением, а топливный насос различался по способу регулирования и количеству настроенных режимов.

Читать еще:  Чем смазать замок зажигания автомобиля? полный список и советы

Попробовали почти все варианты исполнения системы, доступные на тот момент. Вскоре выяснилось, что надежность топливной аппаратуры оставляет желать лучшего, настройка крайне сложна, а при отказе системы растет риск выхода из строя мотора целиком. Это уже не говоря об очень высокой цене такой системы питания. Плюс, для атмосферных моторов прирост мощности оказался откровенно невелик, а экономичность все еще не имела особого значения при проектировании автомобилей. По сути, основной причиной экспериментов с впрыском было широкое внедрение наддува на гоночных машинах того периода.

Главная претензия была к возможностям настройки ТНВД – их не хватало даже для гоночных машин. Регулирование по давлению во впускном коллекторе и степени открытия дроссельной заслонки показало себя не очень точным. Попытки приспособить электронику для управления еще больше снижали надежность, хотя идея была не нова – впервые электроуправляемый впрыск появился еще на мотоциклах Guzzi в 1939 году.

Форсунки тоже оказались очень уязвимы – не зря на тот момент многие производители предпочли вариант с их боковым расположением на стенке блока ниже ВМТ (верхней мертвой точки), где поршень закрывал форсунку в момент воспламенения. Это немного уменьшало закоксовывание и шансы на перегрев форсунки, но всех проблем не решало, к тому же создавало новые – с поршневыми кольцами, например.

В общем, карбюратор и набирающий популярность обычный распределенный впрыск на тот момент оказались лучше за счет более простой и надежной конструкции. Причем как на гражданских машинах, так и на гоночных. В конце 60-х о прямом впрыске забыли, и надолго, а заодно запретили наддув в большинстве гоночных классов. Прогресс в этом направлении остановился.

Попытка номер два, уже с электроникой

Снова вспомнили о технологии уже в девяностые годы, когда обычный распределенный впрыск с электронным управлением прочно завоевал свое место под солнцем. Компания Mitsubishi вложила немало сил в развитие и рекламу моторов GDI , а Toyota – двигателей D 4. У обоих был непосредственный впрыск.

В первую очередь акцент делался уже на экономичность такого решения – на малой нагрузке такой мотор в теории мог работать на сверхобедненной смеси, с соотношением бензин-воздух порядка 40 к 1 вместо «идеального» 14,7 к 1.

А вот на практике получилось не так уж здорово.

Сниженного расхода топлива добиться было нереально. Моторы Mitsubishi на целом ряде модификаций, особенно европейских, вообще не работали на переобедненной смеси, прошивка этого не позволяла. И даже если мотор имел подобные режимы, то в реальной эксплуатации работал на них очень редко. Система управления старалась их не допускать для предотвращения излишних выбросов окислов NO – с ними не могли справиться даже очень дорогие специальные катализаторы.

А вот топливная аппаратура оказалась отменно капризной – в частности, пусковые качества в холодную погоду пострадали. Хорошо хоть с настройкой режимов работы мотора проблем не возникло благодаря широкому внедрению электроники.

Зато уже на примере первых моторов GDI накопился богатый опыт, который говорил о плохих условиях работы впускных клапанов и повышенной склонности к залеганию поршневых колец. Компания даже специально разработала жидкость для раскоксовки – Mitsubishi Shumma , которая до сих пор остается единственным специализированным «заводским» средством для подобного применения. Других сопутствующих проблем тоже хватало – например, форсунки пропускали топливо в масло, причем в больших количествах. Особых проблем это не доставляло, пока объем бензина не превосходил объем масла.

«Тойотовцы», в отличие от своих соотечественников, благоразумно решили не выводить свои «непосредственные» моторы за пределы домашнего рынка, а вот Mitsubishi , что называется, получили «по полной». Удар по репутации получился значительный, и последствия аукаются до сих пор.

Возможности на новом уровне

После устранения первых «детских болезней» плюсы стали более очевидными. Такие моторы позволяли почти избежать риска детонации до момента зажигания, а значит – безбоязненно повышать степень сжатия бензиновых моторов до практического максимума в 12:1 – 13:1 и не снижать ее для двигателей с компрессорами и турбонаддувом. Некоторое уменьшение надежности работы почти окупалось снижением расхода топлива и повышенной мощностью.

Особенно удачно все сложилось для «даунсайзинговых» моторов, ведь малый объем, высокий КПД и хорошие возможности для форсирования – это как раз то сочетание, которое было просто необходимо европейским автопроизводителям, зажатым в тиски правил ЕС по ежегодному снижению расхода топлива.

При малой нагрузке и большом коэффициенте остаточных газов в цилиндре, в результате работы системы EGR или фазовращателей, можно было побаловаться и работой на сверхобедненной смеси, и послойным смесеобразованием. Выбросы NO при этом удается удержать в пределах нормы, меньше, чем у дизельных моторов. Особенно хорошо себя проявили при этом быстродействующие форсунки высокого давления, например, с пьезокерамикой. Впрочем, по сравнению с даунсайзингом все это большого эффекта уже не дает.

Новые моторы с непосредственным впрыском не пришлось долго ждать. FSI моторы от VW , а вслед за ними и TFSI – уже с турбонаддувом и компрессорами. CGI версии двигателей от Mercedes были в основном компрессорными, реже – атмосферными, и лишь в последние годы – с турбонаддувом. Следом – непосредственный впрыск на моторах BMW , Opel , Ford и всех остальных…

Сейчас найти в Европе двигатель с обычным распределенным впрыском и без турбонаддува – целая проблема. Для машин до D -класса включительно такие можно пересчитать по пальцам. Автопроизводители Японии и США направление развития поддержали, но широкий выпуск таких моторов начали гораздо позже, когда европейские производители уже набили шишек на вопросах надежности и экологичности.

Кстати, оба первопроходца в лице Mitsubishi и Toyota все эти годы держали в производственной гамме совсем мало моделей с непосредственным впрыском: эксперименты показали, что атмосферным моторам он не очень нужен, а турбированного даунсайза у них в производственной гамме попросту не было.

В следующей части материала о непосредственном впрыске мы поговорим о тонкостях его конструкции, проблемах в эксплуатации, плюсах и минусах… А еще попытаемся понять, может ли он хотя бы теоретически стать столь же надежным, как заслуженный распределенный впрыск, к которому мы все так привыкли.

Немного истории

Прямой впрыск – идея не новая, в истории имеется ряд примеров, где такая система использовалась. Первое массовое использование такого типа питания мотора было в авиации в средине прошлого века. Использовать ее пытались и на автотранспорте, однако широкого распространения она не получила. Систему тех годов можно рассматривать как некий прототип, поскольку она была полностью механической.

«Вторую жизнь» система непосредственного впрыска получила в средине 90-х годов 20 века. Первыми свои авто с установками, имеющими прямой впрыск, оснастили японцы. Разработанный в Mitsubishi агрегат получил обозначение GDI, которое является аббревиатурой «Gasoline Direct Injection», что обозначается как непосредственный впрыск топлива. Чуть позже Toyota создала свой мотор – D4.

Прямой впрыск топлива

Со временем моторы, в которых используется прямой впрыск, появились и у других производителей:

  • Концерн VAG – TSI, FSI, TFSI;
  • Mercedes-Benz – CGI;
  • Ford – EcoBoost;
  • GM – EcoTech;

Непосредственный впрыск не является отдельным, совершенно новым типом, и относится он к инжекторным системам подачи топлива. Но в отличие от предшественников, топливо у него впрыскивается под давлением сразу в цилиндры, а не как раньше – во впускной коллектор, где бензин перемешивался с воздухом перед подачей в камеры сгорания.

Минусы

Теперь, собственно, о минусах, и для этого хочется заострить внимание на форсунках и ТНВД.

Требования к этим элементам предъявляются весьма высокие, так как им необходимо безотказно работать в непростых условиях – высокое давление, высокие температуры, а это тянет за собой удорожание и технологические сложности.

К тому же, на соплах форсунок образовываются загрязнения из продуктов горения топлива, поэтому в автомобили с двигателями, оснащёнными непосредственным впрыском, нужно заливать только высококачественный бензин – тоже проблема в наших реалиях. Масло также для них подходит только самое лучшее. В итоге содержание такого авто влетает в копеечку.

Вот так, мои дорогие читатели, надеюсь, я как-то помог вам приоткрыть глаза на непосредственный впрыск топлива. Но тема инжекторных технологий на этом не исчерпывается, поэтому не пропускайте следующие публикации.

Не лишним будет узнать что такое система mono jetronic.

И не стесняйтесь, делитесь в сетях полученными знаниями.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты