Mototehnika21.ru

МотоТехника Онлайн
20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловая машина Двигатель Стирлинга

Energy
education

сайт для тех, кто хочет изучать энергетику

Двигатели и нагнетатели

Тепловые двигатели

Тепловой двигатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры.

2. Двигатели внешнего сгорания

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.


Двигатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления.

При нагревании газа его объём увеличивается, а при охлаждении — уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. 1. Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам). 2. Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру. 3. Воздух остывает и сжимается, поршень опускается вниз. 4. Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.


Двигатель Стирлинга может использоваться для преобразования солнечной энергии в электрическую. Для этого двигатель стирлинга устанавливается в фокус параболического зеркала, (похожего по форме на спутниковую антенну) таким образом, чтобы область нагрева была постоянно освещена. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга.

Компания Stirling Solar Energy разрабатывает солнечные коллекторы большой мощности — до 150 кВт на одно зеркало. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

Недостатки.

• Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

• Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий.

• Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

• Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Стирлинг Азанова

Своё новшество он построил на фундаменте двигателя Стирлинга, которому уже более 200 лет. В 1815 году шотландский священник Роберт Стирлинг, отложив в сторону Библию, построил тепловой двигатель, работающий по замкнутому циклу с регенерацией.

Устройство преобразует тепловую энергию в механическую, работая как двигатель, с тем лишь отличием, что энергия приходит извне, а не производится непосредственно, как в двигателе внутреннего сгорания. Сейчас подобные агрегаты используются в космических аппаратах, на дорогих яхтах, в подвальных помещениях престижных клиник в качестве резервного питания и так далее.

Читать еще:  Ремонт стоек амортизаторов своими руками видео

«Информационный вакуум и полная изоляция рождали забавные идеи. Меня «торкнуло» как когда-то и Стирлинга: рабочее тело надо изолировать от окружающей среды, как меня от общества», – улыбаясь, добавляет Михаил.

Как построить эффективный тепловой насос Стирлинга?

Двигатели или тепловые насосы Стирлинга — это системы, которые могут работать при невероятно малой разности температур. Некоторым вариантам двигателей Стирлинга для работы достаточно даже тепла человеческого тела. В статье мы рассматриваем динамику этой интересной машины, которую можно построить в домашних условиях, и показываем, как создать её модель в COMSOL Multiphysics.

Современные применения старой идеи

Сначала немного истории двигателя Стирлинга. Разработанный два века назад в 1816 году Робертом Стирлингом двигатель в то время называли «двигателем будущего». Хотя эта технология так и не стала действительно популярной, двигатели Стирлинга широко используются во многих современных прикладных задачах. Например, солнечный вариант двигателя Стирлинга непосредственно преобразует солнечное тепло в механическую энергию, которая в свою очередь приводит в движение генератор и производит электричество. Кроме того, этот же подход используется для получения энергии из геотермальных источников и тепловых сбросов промышленных предприятий. Вероятно, самая удивительная область, в которой нашли свое применение двигатели Стирлинга — это шведские подводные лодки; в них двигатели Стирлинга обеспечивают тягу даже без доступа к воздуху.

От тепловой энергии к механической работе

Мы рассказали о некоторых применениях двигателей Стирлинга, но каков же принцип работы этого устройства? В двигателе Стирлинга тепловая энергия преобразуется в механическую работу в ходе циклического процесса. Детали реализации могут отличаться, но основной принцип остается неизменным. Рабочее тело проходит через четыре процесса: охлаждение, сжатие, нагрев и расширение. Теплота переносится газом от горячей стороны двигателя к холодной. КПД двигателя не превосходит КПД цикла Карно.

В отличие от обычных двигателей, двигатели Стирлинга не требуют для своей работы высоких температур. Некоторые двигатели успешно работают при небольшой разности температур между горячей и холодной сторонами. Кроме того, для них характерен очень низкий уровень шума и соответствующих потерь энергии, поскольку в рабочем процессе не происходят взрывы и не выделяются выхлопные газы. В то же время двигатели Стирлинга лучше всего подходят для прикладных задач, в которых требуется обеспечить постоянную мощность, поскольку динамически регулировать их мощность чрезвычайно сложно. Это, вероятно, самая главная причина, по которой мы до сих пор не управляем автомобилями с двигателями Стирлинга.


Двигатель Стирлинга, работающий от тепла человеческой ладони. (Изображение «Двигатель Стирлинга, который работает только от разности температур между окружающим воздухом и ладонью». Собственная работа участника Arsdell. Доступно по лицензии Creative Commons «Атрибуция — На тех же условиях» 3.0 на Викискладе).

Как построить свой собственный двигатель Стирлинга

Если у вас есть опыт ручной работы, вы можете сами собрать двигатель Стирлинга в домашних условиях даже без профессиональных инструментов и соответствующего опыта. На YouTube вы можете найти несколько видеоуроков и пошаговых руководств по сборке двигателя. Самый простой вариант можно собрать из банки из-под колы и других ненужных в хозяйстве вещей.

Конечно, КПД такого двигателя Стирлинга вряд ли будет оптимальным. Более подходящим решением является создание численной модели двигателя.

Моделирование теплового насоса Стирлинга в COMSOL Multiphysics

С помощью численной модели двигателя Стирлинга мы можем подобрать и испытать различные сочетания материалов и настройки параметров. Процесс описывается уравнениями теплопередачи и гидродинамики, а для упрощенного описания механической составляющей процесса достаточно решить дополнительное обыкновенное дифференциальное уравнение — уравнение движения.

Двухмерная осесимметричная модель состоит из основного цилиндра, который содержит рабочее тело (воздух) и поршень. В малом цилиндре вверху расположен приводной поршень. Оба поршня соединены параллельно и двигаются на коленчатом валу, на котором они разнесены по фазе на 90°. Коленчатый вал в модель не включен. Такой вид двигателя Стирлинга называется гамма-конфигурацией.


Модель теплового насоса Стирлинга.

Здесь задача теплопередачи в рабочем газе уже решена. Механическая сторона процесса реализуется с помощью подвижной сетки (ALE). Вытеснитель и приводной поршень могут свободно двигаться в направлении z. Установленное смещение соответствует режиму теплового насоса. При этом механическая работа используется для передачи тепловой энергии в направлении, противоположном направлению самопроизвольной передачи теплоты. Обратный процесс — собственно работу двигателя Стирлинга — можно моделировать, используя источник тепла и рассчитывая конечные силы давления на приводной поршень и вытеснитель. В любом случае, система проходит цепочку процессов, которые соответствуют четырем стадиям цикла Карно:


Термодинамические процессы, действующие на рабочее тело.

КПД такого цикла далек от цикла Карно, но полученный график зависимости давления от объема, который вы видите ниже, совпадает с экспериментальными данными.


График зависимости давления от объема в цикле Стирлинга.

Основное преимущество модели заключается в том, что мы можем изучать физические явления в тепловом насосе. Например, представленное ниже анимированное изображение показывает распределение скоростей во время работы теплового насоса.

Распределение скоростей во время работы теплового насоса.

Поршень передает механическую энергию, требуемую для перекачки тепла, а значит, мы можем изучить динамическое распределение температуры во время работы теплового насоса.

Анимация, показывающая распределение температуры.

Увеличение КПД

Чтобы увеличить КПД двигателя Стирлинга, необходимо максимизировать площадь замкнутой области на графике «давление-объем» (pV-диаграмме). Эта площадь соответствует работе, совершенной двигателем. Общий КПД двигателя можно увеличить несколькими способами. Выбор в качестве рабочего тела газа с высокой удельной газовой постоянной (например, с малой молярной массой) максимизирует работу, которую может произвести двигатель в процессе изотермического расширения. Поэтому в качестве рабочего газа обычно используют водород или гелий. Кроме этого, можно максимизировать передачу тепла через вытеснитель, используя пористый вытеснитель-регенератор (см. эту статью).

Читать еще:  Дизельный двигатель бмв 2 литра. Четыре самых надежных двигателя BMW. Эксплуатация и типичные неисправности

Рубрики блога

Я соглашаюсь с тем, что COMSOL будет собирать, хранить и обрабатывать мои персональные данные согласно моим настройкам и Политике конфиденциальности COMSOL . Я соглашаюсь получать электронные письма от COMSOL AB и его аффилированных компаний о блоге COMSOL. Это согласие может быть отозвано.

Сфера применения двигателей внешнего сгорания

В результате последующих усовершенствований конструкции мотора, газ нагревается/охлаждается при постоянном давлении в системе (вместо сохранения объема). Это изобретение инженера из Швеции по имени Эриксон, позволило создавать двигатели, предназначенные для использования работниками шахт, типографий, судов и пр. В пассажирских экипажах того времени тепловые двигатели не применялись, т. к. обладали сравнительно большим весом.

Двигатели внешнего сгорания часто использовались для приведения в действие генераторов в районах, где отсутствовала подача электроэнергии.

Интересно: В 1945 году изобретатели-энтузиасты компании Philips придумали обратное применение тепловых устройств. При раскручивании вала электрическим двигателем, головка цилиндра охлаждается до минус 190°С. Это дало возможность использовать усовершенствованный поршневой двигатель внешнего сгорания Стирлинга в холодильных агрегатах.

Двигатель Стирлинга. Виды и конструкции. Устройство и работа

Современная автомобильная промышленность достигла такого уровня, что без серьезных исследований невозможно добиться кардинальной модернизации в конструкции двигателей внутреннего сгорания. Это способствовало тому, что конструкторы стали обращать внимание на альтернативные разработки силовых установок, таких как двигатель Стирлинга.

Одни автоконцерны сконцентрировали свои силы на разработке и подготовке к выпуску в серию электрических и гибридных автомобилей, другие инженерные центры затрачивают финансовые средства в проектирование двигателей на альтернативном топливе, изготовленном из возобновляемых источников. Существуют другие различные разработки двигателей, которые в будущем могут стать новым двигателем для различных средств транспорта.

Таким возможным источником энергии механического движения для автомобильного транспорта будущего может стать двигатель внешнего сгорания, изобретенный в 19 веке ученым Стирлингом.

Устройство и принцип работы

Двигатель Стирлинга выполняет преобразование тепловой энергии, получаемой из внешнего источника, в механическое движение благодаря изменению температуры жидкости, циркулирующей в закрытом объеме.

В первое время после изобретения такой двигатель существовал в виде машины, действующей на принципе теплового расширения.

В цилиндре тепловой машины воздух перед расширением нагревался, перед сжатием охлаждался. Вверху цилиндра 1 находится водяная рубашка 3, дно цилиндра непрерывно нагревается огнем. В цилиндре расположен рабочий поршень 4, имеющий уплотнительные кольца. Между поршнем и дном цилиндра расположен вытеснитель 2, передвигающийся в цилиндре со значительным зазором.

Воздух, находящийся в цилиндре, перекачивается вытеснителем 2 к дну поршня или цилиндра. Вытеснитель движется под действием штока 5, проходящего через уплотнение поршня. Шток в свою очередь приводится в действие эксцентриковым устройством, вращающимся с запаздыванием на 90 градусов от привода поршня.

В позиции «а» поршень расположен в нижней точке, а воздух находится между поршнем и вытеснителем, охлаждается стенками цилиндра.

В следующей позиции «б» вытеснитель перемещается вверх, а поршень остается на месте. Воздух, находящийся между ними, выталкивается ко дну цилиндра, охлаждаясь.

Позиция «в» — рабочая. В ней воздух нагревается дном цилиндра, расширяется и поднимает два поршня к верхней мертвой точке. После выполнения рабочего хода вытеснитель опускается ко дну цилиндра, выталкивая воздух под поршень, и охлаждаясь.

В позиции «г» охлажденный воздух готов к сжатию, и поршень перемещается от верхней точки к нижней. Так как работа сжатия охлажденного воздуха меньше, чем работа расширения нагретого воздуха, то образуется полезная работа. Маховик при этом служит своеобразным аккумулятором энергии.

В рассмотренном варианте двигатель Стирлинга обладает малым КПД, так как теплота воздуха после рабочего хода должна отводиться через стенки цилиндра в охлаждающую жидкость. Воздух за один ход не успевает снизить температуру на необходимую величину, поэтому необходимо было продлить время охлаждения. Из-за этого скорость мотора была маленькой. Термический КПД был также незначительным. Тепло отработанного воздуха уходило в охлаждающую воду и терялось.

Разные конструкции

Существуют различные варианты устройства силовых агрегатов, действующих по принципу Стирлинга.

Конструкция исполнения «Альфа»

Этот двигатель включает в себя два отдельных рабочих поршня. Каждый поршень расположен в отдельном цилиндре. Холодный цилиндр находится в теплообменнике, а горячий нагревается.

Конструкция исполнения «Бета»

Цилиндр с поршнем охлаждается с одной стороны, и нагревается с противоположной стороны. В цилиндре перемещается силовой поршень и вытеснитель, служащий для уменьшения и увеличения объема рабочего газа. Регенератор выполняет обратное перемещение остывшего газа в нагретое пространство двигателя.

Конструкция исполнения «Гамма»

Вся система состоит из двух цилиндров. Первый цилиндр весь холодный. В нем перемещается рабочий поршень, Второй цилиндр с одной стороны нагретый, а с другой – холодный, и предназначен для передвижения вытеснителя. Регенератор для перекачки охлажденного газа может являться общим для двух цилиндров, либо может быть включен в устройство вытеснителя.

Преимущества
  • Как и множество двигателей внешнего сгорания, двигатель Стирлинга способен функционировать на разном топливе, так как для него важно наличие перепада температуры. При этом не важно, каким топливом он вызван.
  • Двигатель имеет простое устройство, и не нуждается во вспомогательных системах и навесных устройствах (коробка передач, ремень ГРМ, стартер и т.д.).
  • Особенности конструкции обеспечивают длительную эксплуатацию: больше 100 тысяч часов постоянной работы.
  • Работа двигателя Стирлинга не создает большого шума, так как внутри двигателя не происходит детонация топлива, и отсутствует выпуск отработанных газов.
  • Исполнение «Бета», снабженное кривошипно-шатунным устройством в виде ромба, является наиболее сбалансированным механизмом, который при функционировании не создает вибрацию.

  • В цилиндрах мотора не возникают процессы, оказывающие вредное воздействие на природную среду. При подборе оптимального источника тепла мотор Стирлинга может стать экологически чистым устройством.
Читать еще:  Как Заменить Помпу ВАЗ 2114 ~ SIS26.RU
Недостатки
  • При значительных положительных характеристиках быстрое серийное производство двигателей Стирлинга нереально по некоторым причинам. Основной вопрос в материалоемкости устройства. Чтобы охлаждать рабочее тело, необходим большой радиатор, что значительно увеличивает габариты и вес оборудования.
  • Сегодняшний уровень технологий дает возможность двигателю Стирлинга конкурировать по свойствам с новыми бензиновыми двигателями за счет использования сложных типов рабочего тела (водород или гелий), находящихся под очень большим давлением. Это значительно повышает опасность использования таких двигателей.
  • Серьезная проблема эксплуатации связана с проблемами температурной стойкости стальных сплавов и их теплопроводности. Тепло подходит к рабочему пространству с помощью теплообменников. Это приводит к значительным потерям тепла. Также теплообменник должен производиться из термоустойчивых сплавов, которые также должны быть устойчивы к повышенному давлению. Соответствующие этим условиям материалы очень сложны в обработке и имеют высокую стоимость.
  • Принципы перехода двигателя Стирлинга на другие режимы функционирования также существенно отличаются от привычных принципов. Для этого необходимо создание специальных устройств управления. Например, для изменения мощности нужно менять угол фаз между силовым поршнем и вытеснителем, давление в цилиндрах, либо изменить емкость рабочего объема.
Двигатель Стирлинга и его использование

При необходимости создания преобразователя тепла компактных размеров можно вполне использовать мотор Стирлинга. При этом эффективность других аналогичных двигателей значительно ниже.

  • Универсальные источники электричества. Моторы Стирлинга могут преобразовывать тепло в электричество. Существуют проекты солнечных электроустановок с применением таких двигателей. Их используют как автономные электростанции для туристов. Некоторые производители изготавливают генераторы, действующие от газовой конфорки. Существуют также проекты генераторов, которые работают от радиоизотопных источников тепла.
  • Насосы. Если в контуре системы отопления установлен насос, то эффективность отопления значительно возрастает. В системах охлаждения также устанавливают насосы. Электрический насос может выйти из строя, к тому же, он потребляет электрическую энергию. Насос, действующий по принципу Стирлинга, решает этот вопрос. Двигатель Стирлинга для перекачивания жидкостей будет проще обычной схемы, так как вместо поршня может применяться сама перекачиваемая жидкость, служащая также для охлаждения.
  • Холодильное оборудование. В конструкции всех холодильников используется принцип тепловых насосов. Некоторые производители холодильников планируют устанавливать на свои изделия двигатель Стирлинга, которые будут очень экономичны. Рабочим телом будет выступать воздух.

Сверхнизкие температуры. Для сжижения газов такие моторы очень эффективны. Их использование более выгодное, чем турбинные устройства. Также двигатель Стирлинга применяется в устройствах для охлаждения датчиков точных приборов.

Сегодня исследования установок Стирлинга для подводных, космических и других установок, а также проектирование основных двигателей проводятся во многих зарубежных странах. Такой высокий интерес к моторам Стирлинга стал итогом интереса общественности в борьбе с загрязнением атмосферы, шумом и сохранением природных энергетических источников.

Виды стирлингов

Существуют три классических вида двигателя Стирлинга:

  • Альфа-Стирлинг ‒ имеет два раздельных силовых поршня расположенных в раздельных цилиндрах. Один из них ‒ горячий, а другой ‒ холодный. Горячая пара «цилиндр и поршень» расположены в теплообменнике с высокой температурой, холодная пара «цилиндр и поршень» ‒ с пониженной температурой. У этого вида соотношение мощности и объёма достаточно велико, хотя, и очень высокая температура «горячего» поршня, что создаёт технические трудности при изготовлении.
    Регенератор расположен между горячей и холодной соединительными трубками;
  • В модели Бета-Стирлинг ‒ всего один цилиндр. Он горячий на одном конце и холодный на другом. Внутри цилиндра перемещаются поршень (с него снимают мощность) и вытеснитель (он изменяет объём горячей зоны). Газ качается из холодной зоны цилиндра в горячую сквозь регенератор. Регенераторы бывают внешними, в виде части теплообменника, или совмещёнными с поршнем-вытеснителем;
  • В варианте Гамма-Стирлинг тоже присутствуют поршень и вытеснитель, но здесь уже два цилиндра: первый холодный (где движется поршень для отбора мощности), и второй ‒ горячий с одной стороны и холодный с другой (там перемещается вытеснитель). Регенератор также может быть внешним, тогда он соединяет горячую зону второго цилиндра с холодной и с первым (холодным) цилиндром. Внутренний регенератор конструктивно входит в состав вытеснителя;

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector