Mototehnika21.ru

МотоТехника Онлайн
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое электромагнитные реле и соленоиды?

Думаю, все уже в курсе , что поле – это не только гектары земли с пшеницей, картошкой, коноплей 🙂

В нашей жизни существуют еще и другие виды полей, невидимые для человеческого глаза. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?

Магнитное поле образуется вокруг любого куска магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: северный (N – North) и южный (S – South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они нигде не разрываются. Даже в самом магните (доказано наукой). Как вы знаете, Земля – это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами. На полюсах Земли, как вы знаете, компас не работает.

Но самый смак заключается в том, что провод, по которому течет электрический ток, вокруг себя образует то же самое магнитное поле как и простой магнит. Буквой I отмечают направление тока, а В – это линии магнитного поля. Они представляют собой замкнутые круги.

Направление линий магнитного поля определяется правилом буравчика

Даже не знаю, кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.

В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых линий образуется в соленоиде, при подаче на его концы электрического тока!

А если обмотать какую-нибудь железяку этими витками и подать на них напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Краткий обзор продукции

Компания Tai-Shing, продукция которой сертифицирована по ISO 9001, является одним из ведущих производителем соленоидов и реле. Катушки-соленоиды и вентили производятся под брендом Sun-Magnet, реле – под брендом TTI.

Семейство реле включает в себя более ста наименований, аналогичных изделиям других производителей, таких как NEC, NAiS, Takamisawa, Fujitsu, Omron, Tyco. Наличие сертификатов UL, cUL, TUV, CE и RoHS гарантирует потребителю соответствие технологии и качества изготовления международным стандартам.

Компания Tai-Shing имеет собственное испытательное оборудование и ресурсы для тестирования, что позволяет проверять качество продукции, не прибегая к услугам других компаний, и ведет к снижению затрат на производство и испытание продукции.

Производимые Tai-Shing реле можно разделить на несколько крупных семейств: телекоммуникационные, силовые, автомобильные и бистабильные реле. Компания также производит и твердотельные реле с очень хорошими показателями коммутационной способности. Ознакомиться с особенностями реле можно у официального дистрибьютора – компании КОМПЭЛ. Рассмотрим перечисленные семейства электромагнитных реле.

Электромагнитное реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Читать еще:  Как переключать коробку передач механика

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное)Сопротивление обмотки (Ω ±10%)Номинальный ток (mA)Потребляемая мощность (mW)
325120360
57072
610060
922540
1240030
24160015
4864007,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Электромагниты (соленоиды, катушки) С31, C25.4

Электромагниты (соленоиды) для гидрораспределителей DS5 состоят из арматурной трубки (ввинченной в корпус клапана) и катушки, закрепленной на трубке и зафиксированной резьбовым кольцом. В трубке находится погруженный в масло плунжер, что обеспечивает отсутствие его износа при перемещении, а внутренняя часть трубки, находящаяся в контакте с маслом в возвратной линии обеспечивает отвод тепла.
Катушки могут поворачиваться на трубке на 360°, что позволяет удобно разместить их в пространстве.

Примечание 1: Клапаны с электромагнитным управлением поставляются без электроразъёмов. Электроразъёмы должны заказываться отдельно.
Примечание 2: для снижения электромагнитного излучения, рекомендуется использовать разъемы типа «H», которые предотвращают скачки напряжения при размыкании электрической цепи питающей катушку.

Электромагниты (соленоиды, катушки) постоянного тока
(C31-D24-K1, C31-D12-K1/20 и др.)

Запчасти для клапана постоянного тока

1Фиксирующая гайка для катушки с уплотнительным кольцом код 0119383
2Уплотнительное кольцо тип ORM 0320-25-70
3Катушка
4Арматурная трубка ввинчиваемая в корпус:
TD31 M27/20N (уплотнения NBR)
TD31 M27/20V (уплотнения FPM)
ПРИМЕЧАНИЕ: уплотнительное кольцо поз.5 включается в поставку.
Уплотнительное кольцо тип OR 3-192 (15.6×1.78)
5Уплотнительные кольца типа OR 2050(4шт.)
6Уплотнительное кольцо типа OR 2037, только для версии с внешним дренажом в монтажной опорной плите (вариант /Y)

НАБОР УПЛОТНЕНИЙ
Нижеприведённые коды включают уплотнительные кольца, поз. 2, 4, 6, 7
Код 1984418 Уплотнения NBR
Код 1984419 Уплотнения FPM (вайтон)

ВИНТЫ
Крепёжные винты (4 шт.) типа TCEI M5x30 (рекомендуется класс 12.9).
Крутящий момент при затягивании 5 Нм (винты А8.8) 8 Нм (винты А12.9)

Электромагниты переменного тока
(C25.4-A110-K1/10, C25.4-A220-K1/11, C25.4-F110-K1/11 и др.)

Запчасти для клапана переменного тока

1Фиксирующая гайка для катушки код.0119402
2Уплотнительные кольца OR 4100
3Катушка
4Арматурная трубка ввинчиваемая в корпус:
TA25.4-M27/10N (Уплотнения NBR)
ПРИМЕЧАНИЕ: кольцо поз. 6 включается в поставку.
5Уплотнительное кольцо типа OR 3-912 (2 шт.)
6Уплотнительное кольцо типа OR 2050 (5 шт.)

НАБОР УПЛОТНЕНИЙ
Нижеприведённые коды включают уплотнительные кольца, поз. 2, 4, 6, 7
Код 1984420 Уплотнения NBR
Код 1984421 Уплотнения FPM (вайтон)

ВИНТЫ
Крепёжные винты (4 шт.) типа TCEI M5x30 (рекомендуется класс 12.9).
Крутящий момент при затягивании 5 Нм (винты А8.8) 8 Нм (винты А12.9)

Часть 1: Как моделировать линейный электромагнитный поршень

Электромагнитный поршень — это электромеханическое устройство, которое преобразовывает электрическую энергию в линейное механическое движение. Примерами могут служить закрытые электромагнитные клапаны, а также закрытые и открытые электромагнитные реле. В этой заметке мы покажем, как моделировать электромагнитный поршень и его динамику. В данном примере он состоит из многовитковой катушки, магнитного сердечника, немагнитных направляющих и магнитного поршня.

Применение электромагнитных преобразователей

Линейные электромагнитные преобразователи широко используются в промышленности в схемах, где требуется линейное движение. Такие устройства нашли широкое применение в электромагнитных реле, электромагнитных клапанах, автоматических выключателях и контакторах. Данные технологии применяются в различных отраслях, таких как сельское хозяйство, строительство, автомобилестроение и роботостроение.

Читать еще:  Как установить детское автокресло - особенности установки автокресла


Простейшее электромагнитное реле с механической пружиной, катушкой, якорем и сердечником.

Программное обеспечение COMSOL Multiphysics позволяет проектировать линейные электромагнитные преобразователи. Благодаря встроенному функционалу можно рассчитать механические характеристики, рабочие электрические характеристики, эффективность устройства и рабочую частоту в зависимости от конструкционных параметров (размеров, материалов, входного напряжения, тока и т.д.). Пример более комплексного устройства мы рассмотрим в следующей части.

Моделирование линейного электромагнитного поршня в COMSOL Multiphysics

В этом же блоге мы рассмотрим простейший электомагнитный поршень, который состоит из многовитковой катушки, магнитного сердечника, немагнитых направляющих и магнитного поршня. Как показано на рисунке ниже, эти части соединяются с пружиной и демпфером. После подачи (прямоугольного импульса) тока на катушку соленоида, последний создаёт магнитное поле вокруг магнитного сердечника и поршня. Воздействие магнитного поля создаёт силу, которая втягивает поршень, двигая его вверх и разжимая пружину. При макисмальной силе поршень располагается внутри сердечника таким образом, что магнитный поток замыкается с минимальными потерями.

Трёхмерный (слева) и двухмерный осесимметричный (справа) вид электромагнитного поршня в разрезе.

Для тестовой модели Electromagnetic Plunger (Электромагнитный поршень) мы используем двухмерную осесимметричную постановку. Затем добавим интерфейсы Magnetic Fields (Магнитные поля), Moving Mesh (Подвижная сетка) и Global ODEs and DAEs (Глобальные ОДУ и ДАУ), а также выберем исследование — Time Dependent (Нестационарное во временной области). Далее, зададим параметры модели в Global Definitions > Parameters (Глобальные определения > Параметры), как показано на скриншоте ниже.


Список конструкционных параметров для модели электромагнитного поршня.

Для воссоздания большого поступательного перемещения поршня будем использовать «скользящую» сетку для моделирования движения. Для этого в узле Геометрия необходимо разделить подвижную и неподвижную части, создав два разных Union (Объединения). Затем мы завершим создание геометрии, используя узел Form Assembly (Построение сборки), что приведет к автоматическому созданию т.н. тождественной пары (Identity pair) на границе раздела двух Union’ов. Для упрощения моделирования рекомендуется дополнительно создать геометрические выборки (selections) для направляющих, сердечника, катушки, поршня, исходной границы и конечной границы (тождественной пары), а также границы для расчёта силы, как показано на скриншоте ниже.


Различные геометрические выборки для неподвижных и подвижных частей и для идентичных пар в построителе моделей.

Чтобы рассчитать массу поршня, M , которая понадобится для исследования динамики системы, воспользуемся оператором интегрирования, Integration 1 (intop1). Этот оператор вычисляет объём клапана и умножает его на плотность материала. В данном примере поршень сделан из низкоуглеродистой стали 1002 — материала с индексом (mat 3). Также нужно определить переменную для электромагнитной силы, F_z , которую мы будем использовать для расчёта тензора напряжений Максвелла, действующих на поршень. Для этого в физический интерфейс Magnetic Fields необходимо добавить узел Force Calculation (Расчёт силы) и указать имя силы — force . Как это сделать мы подробно объясним в следующем разделе.


Оператор интегрирования и задание переменных.

Моделирование электромагнитных полей в системе

Для расчёта электромагнитных полей в нашем устройстве будем использовать физический интерфейс Magnetic Fields. Чтобы указать то, что поршень сделан из нелинейного магнитного материала, выберем материальную модель H-B curve (H-B-кривая намагничивания) в узле Ampère’s Law (Закон Ампера), который нужно дополнительно добавить в интерфейс. Для сердечника, выполненного из мягкого железа (Soft Iron) проведем аналогичную операцию. Обратите внимание, что в таком случае, имея два различных узла Ampère’s Law, мы можем использовать для поршня и сердечника разные материальные модели при необходимости.

Окно настроек узла Ampère’s Law и H-B-кривая намагничивания нелинейного материала поршня.

С помощью узла Mulit-Turn Coil (Многовитковая катушка) в физическом интерфейсе Magnetic Fields зададим соленоидальную обмотку (Примечание: начиная с версии 5.2a, для этой цели используется узел Coil c опцией Homogenized Multiturn). Обмотка состоит из 200 витков (Nturns = 200) , диаметр провода — 1 mm (Dia_wire = 1 mm) , электрическая проводимость — 6e7 s/m. Протекающий через катушку ток зададим прямоугольным импульсом: I_coil = I0_wire*rect1(t[1/s]) , где rect1() — это прямоугольная функция, определяемая пользователем в Definitions > Rectangle 1. Амплитуда тока I0_wire = 4 A .


Окно настроек узла Multi-Turn Coil (Многовитковая катушка), где заданы выражения для тока и параметры обмотки.

Для расчёта силы, действующей на поршень, добавим узел Force Calculation, который будет рассчитывать силу, действующую на поршень в зависимости от протекаемого тока на основе тензора напряжений Максвелла. Поршень сделан из магнитного материала, поэтому для расчёта мы не можем использовать метод расчёта силы Лоренца, т.к. он подходит только для проводящих немагнитных материалов. Метод расчёта тензора напряжений Максвелла требователен к качеству и разрешению сетки, особенно на границах выбранной области. Чтобы корректно рассчитать силу, рекомендуем провести исследование по сеточной сходимости (mesh refinement study).

Далее, чтобы связать магнитные поля между неподвижными и подвижными частями, нужно добавить граничное условие Continuity (Непрерывность) на соответствующую тождественную пару Identity Pair.

Добавление интерфейса Global ODEs and DAEs

Чтобы описать динамику твёрдого тела (в нашем случае электромагнитного поршня), воспользуемся физическим интерфейсом Global ODEs and DAEs из группы материматических интерфейсов COMSOL Multiphysics. Уравнение движения электромагнитного поршня, прикреплённого снизу к пружине с жёсткостью, k, и к демпферу с коэффициентом затухания, D, имеет следующий вид:

где p — это положение поршня по оси z, v — скорость, M — масса поршня, F_z(p,v,t) — электромагнитная сила, действующая на поршень (против пружины). Приведённое выше уравнение (второго порядка) можно записать, как два раздельных дифференциальных уравнения (первого порядка) для положения поршня и его скорости:

Данные уравнения мы запишем в физическом интерфейсе Global ODEs and DAEs, в котором добавим два отдельных узла global equations (глобальные уравнения), как показано ниже.


Реализация двух дифференциальных уравнений, описывающих движение и положение поршня, в физическом интерфейсе Global ODEs and DAEs.

Моделирование поступательного движения поршня

Для моделирования поступательного движения электромагнитного поршня добавим интерфейс Moving Mesh (Подвижная сетка). Ранее, в учебной модели колеблющегося магнита, мы уже описывали методику того, как применять интерфейс Moving Mesh только к подвижным частям. В нашей модели – это поршень и область воздуха слева от идентичной пары. Воздушная область слева от идентичной пары для упрощения настройки подвижной сетки разделена на три секции. Сетка в верхней и нижней воздушных областях будет сделана деформирующейся, т.е.»расширяющейся» или «сжимающейся», а в средней области распределение будет фиксированным, но при этом она будет передвигаться в соответствии с заданными условиями на границе.

Затем добавим узел Prescribed Mesh Displacement (Предустановленное смещение сетки) и зададим в поле Prescribed z displacement (Предустановленное смещение по оси z) переменную p , которая будет определять положение поршня. Две вертикальные направляющие, которые мы задали в выборке Guiding Boundaries, ограничены только в направлении r. Так что в окне настроек снимем флажок в поле Prescribed z displacement. На рисунке ниже показано окно настроек физического интерфейса Moving Mesh.

Примечание: Мы специально задали, что поршень двигается вместе с небольшой областью воздуха вокруг него. Это упрощает настройку построения сетки для интерфейса Moving Mesh, так как позволяет использовать структурированную сетку (типа Mapped) для двух других воздушных областей. Мы рассмотрим и более сложные конфигурации сетки во второй части данной серии.


Окно настроек интерфейса Moving Mesh (Подвижные сетки).

Есть и другой вариант настройки подвижных сеток: неподвижные области задаются в узле fixed mesh (фиксированная сетка), в то время как подвижные — с помощью узлов prescribed deformation (предустановленная деформация) в направлении оси z, при этом переменная положения, p , из физического интерфейса Global ODEs and DAEs определяет задаваемое движение.

Читать еще:  Симуляция движения и заноса машины в игре на JavaScript / Хабр


Альтернативный способ задания настроек интерфейса Moving Mesh.

Анализ результатов расчёта

Результаты расчёта во временной области (time-dependent) электромагнитного поршня можно увидеть на графиках ниже. Мы выполнили расчёт для двух различных коэффициентов затухания. Как и ожидалось, колебания в системе больше при коэффициенте затухания меньшем, чем его критическое значение. Тем не менее, время нарастания импульса короче.

Графики положения поршня (слева) и его электромагнитной силы (справа) в зависимости от времени для разных коэффициентов затухания.

Графики скорости поршня в зависимости от времени для разных коэффициентов затухания (слева) и тока, протекающего по катушке, в зависимости от времени (справа).

На анимации ниже показано движение поршня в зависимости от протекающего в катушке тока. Слева изображена 3D-анимация динамики электромагнитного поршня (визуализируется магнитная индукция). Справа представлены анимированные зависимости положения поршня и тока, протекающего по катушке, от времени.

Заключетельные соображения по моделированию электромагнитных поршней и преобразователей

В данной заметке мы пошагово рассмотрели моделирование линейного/поступательного электромагнитного преобразователя с использованием трёх различных физических интерфейсов: Magnetic Fields (Магнитные поля), Moving Mesh (Подвижная сетка) и Global ODEs and DAEs. Мы показали, как рассчитывать электромагнитную силу, положение поршня и его скорость, связав физические интерфейсы Magnetic Fields и Moving Mesh и записав дифференциальные уравнения, описывающие движение поршня.

Следите за последующими публикациями в нашем корпоративном блоге, чтобы узнать, как можно ещё больше расширить данную динамическую модель поршня за счет учета ограничителей. Во второй части мы рассмотрим, как добавить физический интерфейс Events (События) для моделирования срабатывания и остановки электромагнитного поршня.

Где применяется соленойдный клапан Данфосс

Область их применения очень разнообразная. Клапан данфосс прямого действия имеет не большие размеры, что делает его применение популярным в самых разных сферах промышленности. Их, например, устанавливают в жидкостных и всасывающих линиях, оснащают трубопроводы горячего газа с фторсодержащими хладагентами.

Регулирующий клапан данфосс используют в трубопроводах теплоснабжения, отопления и охлаждения. Он может ограничивать расход рабочей среды, запирая проход жидкости, когда приблизится к отметке уровня расхода, установленная регулирующая диафрагма держит обозначенный перепад давления.

Материал из которого изготавливается корпуса выбирают исходя из того в какой среде промышленности он будет применен- в агрессивной или нейтральной. Из-за специальных легирующих присадок материалам корпуса имеет высокую сопротивляемость коррозии. Cоленойдные катушки изготавливаются взрывозащищенными и искробезопасными, что делает их безопасными для хладагентов и масел, различного топлива или газа.

Поэтому, соленойдный клапан данфосс нашел широкое применение в отечественных системах тепло- и водоснабжения, а также в сетях централизованного кондиционирования. Связано это с тем, что, имея приемлемую цену, сродни других, значительно опережают их по качеству и прочности.

Про магнитное поле, соленоиды и электромагниты

Магнитное поле создается не только естественными либо искусственными постоянными магнитами, но и проводником, если по нему проходит электрический ток. Как следует, существует связь меж магнитными и электронными явлениями.

Убедиться в том, что вокруг проводника, по которому проходит ток, появляется магнитное поле, несложно. Над подвижной магнитной стрелкой параллельно ей расположите прямолинейный проводник и пропустите через него электрический ток. Стрелка займет положение, перпендикулярное проводнику.

Какие же силы могли вынудить обернуться магнитную стрелку? Разумеется, силы магнитного поля, появившегося вокруг проводника. Выключите ток, и магнитная стрелка займет свое обычное положение. Это гласит о том, что с выключением тока пропало и магнитное поле проводника.

Таким образом, проходящий по проводнику электрический ток делает магнитное поле. Чтоб выяснить, в какую сторону отклонится магнитная стрелка, используют правило правой руки. Если расположить над проводником правую руку ладонью вниз так, чтоб направление тока совпадало с направлением пальцев, то отогнутый большой палец покажет направление отличия северного полюса магнитной стрелки, помещенной под проводником. Пользуясь этим правилом и зная полярность стрелки, можно найти также направление тока в проводнике.

Магнитное поле проводника имеет форму концентрических кругов. Если расположить над проводником правую руку ладонью вниз так, чтоб ток вроде бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс магнитной стрелки. Такое поле именуется радиальным магнитным полем.

Направление силовых линий радиального поля находится в зависимости от направления электронного тока в проводнике и определяется так именуемым правилом «буравчика» . Если буравчик образно ввинчивать по направлению тока, то направление вращения его руки будет совпадать с направлением магнитных силовых линий поля. Применяя это правило, можно выяснить направление тока в проводнике, если понятно направление силовых линий поля, сделанного этим током.

Возвращаясь к опыту с магнитной стрелкой, можно убедиться в том, что она всегда размещается своим северным концом по направлению силовых линий магнитного поля.

Итак, вокруг проводника, по которому проходит электрический ток, появляется магнитное поле. Оно имеет форму концентрических кругов и именуется радиальным магнитным полем.

Устройство и принцип работы клапана соленоидного типа

Типовой соленоидный клапан включает в свой состав:

  • корпус, отлитый из прочных и износостойких материалов;
  • индуктивную катушку с соленоидом;
  • диск или поршень, непосредственно управляющий течением жидкости;
  • пружину-демпфер.

Катушка индуктивности, являющаяся основным рабочим элементом электромагнита, помещена в полностью изолированную от внешней среды капсулу и залита эпоксидной смолой. Такая надежная герметизация исключает возможность попадание в неё воды, являющейся хорошим проводником тока.

Принцип работы клапана соленоидного типа основывается на хорошо известном из школьного курса физики электромагнитном эффекте. Согласно ему при появлении э/м напряженности во всех находящихся в зоне её действия металлических деталях за счет индукции наводится поле того же типа. Намагниченные предметы начинают взаимодействовать с исходной полевой структурой, притягиваясь или отталкиваясь от её носителя.

В устройстве рассматриваемого типа исходное воздействие создается электромагнитной катушкой, а вторичное поле «наводится» в соленоиде (в подвижной части системы). При подаче импульса соленоид с закрепленном на нём управляющим штоком перемещается и закрывает/открывает канал с текущей по нему жидкостью (газом).

Как установить электромагнитный клапан

Все изделия устанавливаются горизонтально, катушкой вверх — в этом положении соленоид работает правильно. Этапы установки:

  1. Очистите трубопровод, подготовьте присоединительные концы.
  2. Определите направление движения рабочей среды. Стрелка на корпусе указывает правильное положение устройства.
  3. Закрепите электромагнитный клапан при помощи фланца или резьбы с использованием соответствующего уплотнения.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector