Общие принципы форсирования двигателей
Для чего необходимо форсирование двигателя?
Для чего необходимо форсирование двигателя?
Увеличить мощность автомобиля, но при этом лишиться на него гарантии или «пожертвовать» частью КПД двигателя… Что лучше? Безусловно, главная цель форсирования двигателя – получить максимальную мощность «сердца» авто. Добиться этого непросто, однако возможно. Что же для этого нужно делать? Какие дополнительные проблемы влечет за собой процесс? И что может стать альтернативой комплексу технических мероприятий, направленных на модернизацию мотора?
Что это такое
Для начала хотелось бы отметить, что форсирование двигателя — это не новость или фантазия, а вполне реальная процедура, которую уже давно и успешно используют многие фирмы по проведению тюнинга. А такое понятие, как тюнинг, означает доработку таких заводских конструкций и параметров, которые полностью не раскрыты. По сути, каждый ДВС имеет резервы, которые нужно знать и уметь раскрывать.
Проводя форсирование двигателя, вы получаете возможность усилить заводские показатели ДВС. И делается это с определённой целью — получить более высокую производительность различных составляющих силового агрегата.
На видео показано, что такое форсированный двигатель:
Другими словами, форсировать двигатель означает увеличить мощность ДВС за счёт чего-то, а в нашем случае за счёт повышения рабочего объёма. И такой подход в деле используют не только так называемые тюнинговые фирмы, но и автоконцерны. К примеру, ДВС ВАЗ 2106 был получен путём форсирования ДВС ВАЗ 2103. И таких примеров множество.
Какие основные методы форсирования двигателя применяются на практике
Наиболее популярными среди автолюбителей являются следующие методы форсирования двигателя:
- установка усовершенствованной ГБЦ;
- тюнинг распределительного вала;
- растачивание блока цилиндров, чтобы увеличить объем мотора;
- увеличение степени сжатия;
- повышение наполняемости цилиндров;
- минимизация потерь из-за трения.
Будет ли метод форсирования двигателя эффективным, зависит прежде всего от того, правильно ли подготовлена ГБЦ. Если автотюнинг будет выполнен правильно, то мотор станет мощнее на 20 %. Наполнение цилиндров топливной смесью станет лучше, она будет полностью сгорать, а выхлопная система будет работать более эффективно.
Тюнинг головки блока цилиндров необходим, чтобы топливная смесь лучше сгорала в рабочей камере. Ведь из нее энергия газов идет на поршень, приводя его в движение.
На процесс образования топливной смеси, вентиляцию и воспламенение, а также сгорание топлива влияет то, как сделана камера сгорания. Поэтому выбранный метод форсирования двигателя должен быть таким, чтобы было возможно усовершенствование этого элемента. Например, камеру сгорания можно отполировать, расширить проходное сечение ГБЦ, увеличить впускные и выпускные каналы, тюнинговать клапаны, совместить коллекторы и каналы головки.
Рекомендуем
- Установка спортивного распредвала
Если вы не хотите увеличивать объем мотора, то данный метод форсирования двигателя — то, что нужно. Когда установлен спортивный распредвал, фазы газораспределения будут меняться в зависимости от режима работы ДВС.
Тюнинговый распределительный вал помогает повысить мощность мотора в специфических условиях езды. К примеру, этот метод форсирования двигателя повысит тягу на низких оборотах. Но на высоких оборотах разгон автомобиля станет хуже.
На силовой агрегат Lada-2108 объемом 1,7 литра, с ходом коленвала 7,8 см и поршнем 82,4 мм, зачастую устанавливают распределительный вал с подъемами клапанов более 10,93 мм. Это позволяет усовершенствовать ДВС так, что он раскручивается до 7500–8000 оборотов в минуту, при этом мощность мотора сохраняется и на «низах».
Увеличенный объем
Следующий метод форсирования двигателя — установка коленвала с большим ходом и увеличение диаметра цилиндра с целью сделать объем мотора больше. Однако в этом случае с повышением объема ДВС должна увеличиться и камера сгорания. Только так можно сделать силовой агрегат форсированным.
Более высокая степень сжатия
Чтобы мотор работал с высоким КПД, используется такой метод форсирования двигателя, как увеличение степени сжатия. Данный показатель определяется фазами газораспределения, то есть задержкой, которая присутствует, когда закрывается впускной клапан. Также на степень сжатия влияет угол открытия дроссельной заслонки.
Как можно увеличить степень сжатия, чтобы сделать двигатель форсированным? Для этого устанавливают спортивный распредвал. Он делает фазы шире, а значит, геометрическая степень сжатия увеличивается. Рекомендуется также использовать топливо с высоким октановым числом. Данный метод форсирования двигателя позволяет сделать мотор мощнее как на низких, так и на высоких оборотах.
Улучшенное наполнение цилиндров
Следующий метод форсирования двигателя позволяет увеличить коэффициент наполнения цилиндров. В результате тюнинга усовершенствуется заводская система впуска и выпуска либо устанавливается новая.
К примеру, на Lada-2108 с завода идет силовой агрегат с коэффициентом наполнения 0,75.
Данный метод форсирования двигателя позволяет снизить сопротивление за счет тюнинга системы впуска. В результате коэффициент наполнения будет 1,0 либо больше. Достичь этого можно за счет уменьшения аэродинамического сопротивления в системе впуска и выпуска, а также в каналах головки блока цилиндров.
Также используется фильтр-нулевик, устанавливается раздельный выпускной коллектор. Другое его название «паук 4-2-1», его необходимо использовать в комплекте с прямоточной выхлопной системой.
Обратите внимание на то, что любой метод форсирования двигателя требует серьезных вложений. Следует помнить также о том, что даже после усовершенствования впускной и выпускной систем, которое приведет к уменьшению потерь, мощность мотора увеличится совсем немного.
Рекомендуем
Что представляют собой механические потери ДВС? Прежде всего, это трение, потери насоса, потери на вращение приводов и прочих элементов. Однако максимальная потеря мощности возникает из-за того, что детали в цилиндрах трутся друг о друга. Один из методов форсирования двигателей заключается в том, что устанавливаются специальные поршни с небольшой площадью юбки. А также ход поршня делается меньше. После всех проведенных процедур эти детали должны пройти развесовку. В результате все элементы КШМ будут идеально сбалансированы.
Когда цилиндры наполняются воздухом, силовая установка работает как насос. Часть энергии уходит на приведение механизма в движение. Чтобы потери уменьшились, необходимо снизить аэродинамическое сопротивление на впуске.
Если машина едет на большой скорости, особенно при боковом либо линейном ускорении, смазка в картере мотора попадает на щеки и шейки коленвала, не давая ему вращаться.
Данный метод форсирования двигателя позволяет снизить подобные потери за счет установки системы сухого картера. Суть его действия заключается в том, что масло из поддона выкачивается, при этом мощность мотора увеличивается.
Энергия также теряется, когда движутся приводы таких узлов, как газораспределительный механизм, генератор и помпа. Чтобы форсировать двигатель для езды на высоких оборотах, следует выбирать метод, позволяющий повысить передаточное отношение приводов.
Мощностной тюнинг: преимущества и недостатки
Стоит начать с того, что практически любой бензиновый или дизельный двигатель можно форсировать. Так называемый «железный» тюнинг без установки турбины обеспечивает прирост мощности около 10-20%. Доработка мотора посредством установки турбонаддува обеспечивает до 40% увеличения мощности.
Что касается моторесурса, форсирование может как значительно сократить, так и увеличить срок службы силового агрегата. Также ресурс будет напрямую зависеть от целевого назначения и индивидуальных условий, в которых эксплуатируется конкретный двигатель.
В качестве примера можно провести сравнение тюнингового агрегата и заводского. Если новый форсированный мотор собирается специалистами в техническом центре, то при одинаковых условиях эксплуатации именно тюнинговый ДВС прослужит в полтора или два раза дольше. Дело в том, что в процессе массового изготовления на заводе обычный двигатель не проходит индивидуальной настройки и подгонки во время сборки. Главной задачей сборки на конвейере выступает не максимальная точность и последующая надежность агрегата, а сборка в соответствии с рядом стандартов и допусков. Что касается индивидуально собранного двигателя, то в процессе его создания учитываются даже десятые доли граммов и миллиметров (развесовка, балансировка и т.п.) для достижения лучших показателей, а также устанавливаются усиленные детали и узлы, изначально рассчитанные на более серьезные нагрузки.
Такой прирост мощности зачастую достигается в комплексе с установкой турбонагнетателя или механического компрессора. По этой причине многие автовладельцы останавливают свой выбор на доработке мотора без монтажа турбины.
Способы подключения сканера для к компьютеру
Изображение, которое было успешно отсканированно должно быть переведено на наш домашний компьютер для обработки или хранения.
1. Физическое соединение между сканером и компьютером.
Подключение: Параллельное соединение
Это один из древнейших способ и самый медленный способ. Хотя этот Тип соединения является большим экономическим и имел скорость передачи данных до 70 Кбит/с.
Подключение: Интерфейс малых компьютерных систем [интерфейсом SCSI]
Этот метод может быть целесообразным только с помощью карты интерфейса SCSI. Раньше сканеры используются с выделенной плате SCSI. Хотя скорость передачи данных достаточно высока, намного экономичнее и легче соединений, таких как FireWire и USB пришел на его место.
Подключение: Универсальная последовательная шина USB
Подключение USB является последней и наиболее экономичный способ передачи данных. Она имеет скорость до 60 Мбит/с и может быть легко подключен к сканеру.
Подключение: FireWire
Это самый быстрый из всех вышеприведенных методов. Он был введен в последней высокопроизводительных сканеров и идеально подходит для сканирования изображений с высоким разрешением. Он может передавать данные на максимальной скорости до 800 Мбит/с.
2. Передача информации от сканера к компьютеру
Передача информации от сканера к компьютеру через прикладное программное обеспечение является основным решением. Для этого используются программные интерфейсы [API]. По стандартам API компьютер может передавать данные с любого сканера, даже не зная деталей сканера. Наиболее часто используемое программное обеспечение для передачи изображений из сканера в Adobe Photoshop. Photoshop поддерживает стандарт TWAIN. Если сканер поддерживает тот же стандарт, то возможна передача информации. API используется в большинстве сканеров, а также используется в другом Low-End оборудовании. TWAIN — это просто как водитель, который помогает в общении со всеми другими сканерами с помощью общего языка.
Обработанные данные
После попадания в компьютер, фактический объем объекта будет, как несжатое составное изображение. Это изображение может позже отредактировано в Photoshop или других графических программах, чтобы преобразовать его в формат JPEG и сжать с потерями или без потерь сжатого в формат PNG. Если это текстовое изображение, то оно будет преобразовано в .txt файл с помощью программного обеспечения оптического распознавания символов (OCR ). Текст будет точным, в зависимости от четкости ее изображения.
Автоматический метод чистки сканера
Пленки, используемые при проверке могут быть подвержены пыли и царапинам. Современные сканеры имеют встроенную процесс очистки, так называемой инфракрасной очистки. В этом методе инфракрасный луч будет использоваться для сканирования пленки. Когда луч попадает на местами с пылью и царапинами, луч будет отсекаться. Таким образом, определяется правильное положение, размер и форму пыли, которое будет рассчитываться и будет удалено. Большинство современных компаний, таких как Nikon, Microtek и Epson называют эту технику: Digital ICE, в то время как Canon называет эту технику: Film Automatic — Автоматическое ретуширование и улучшение системы [FARE].
Длинноходные и короткоходные моторы – в чем разница, и какие лучше?
Признайтесь, что вы часто видели в тест-драйвах фразы про «типично короткоходный характер мотора» и не вполне понимали, о чем идет речь. Сегодня мы наконец расскажем, что такое коротко- и длинноходные моторы, в чем разница подходов к проектированию двигателей, и почему сейчас можно уверенно сказать, что «длинноходники» все-таки победили.
Средняя скорость, и какой она бывает
Д ля понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.
Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.
От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.
Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.
От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.
Короткоходные, длинноходные и «квадратные» моторы
Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.
Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.
При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.
Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.
На фото: двигатель Nissan Qashqai
Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.
Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.
Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.
Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.
Длинноходный прогресс
90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.
А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.
Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.
В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.
На фото: двигатель Volkswagen Golf GTI
Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.
В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.
Дизели
Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.
На фото: двигатель Volkswagen Golf TDI
В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.
Оборотная сторона
Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.
Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.
А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.
Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.
На фото: двигатель Renault Latitude
Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.
Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.
Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.
Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.
На фото: двигатель Mercedes-AMG CLA 45 4MATIC
Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.
Конец спорам
Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.
Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.
Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».
Самые распространенные виды тюнинга
Установка турбокомпрессора или турбонагнетателя
Данные устройства позволяют закачать во впускной коллектор больше воздуха и, тем самым, создать большее давление. Турбонагнетатель отличается от турбокомпрессора отсутствием турболага – промежутка времени от запуска двигателя до достижения им нужного числа оборотов (и увеличения мощности).
Однако при этом нагнетатель отнимает около 30 % мощности двигателя.
Установка прямоточного глушителя
Глушитель без катализатаров, с ровными изгибами или без них позволяет двигателю с турбокомпрессором, вращающему еще и крыльчатку, проще избавляться от выхлопных газов.
Установка специальной головки блока цилиндров
Сегодня представлено множество вариантов головок блока цилиндра для тюнингованных двигателей. Благодаря аналогичным разъемам и патрубкам они устанавливаются так же, как и обычные ГБЦ.
Вместо специальной головки можно приобрести модифицированную, от автопроизводителя. Это обойдется в меньшую сумму, но придаст двигателю новые возможности.
Расточка блока цилиндров
Обычно объем двигателя указывается в литрах (1,8 л., 2 л., 4 л. и т.д.) или кубических сантиметрах (в 1 л 1000 см3). В американских автомобилях используются кубические дюймы.
Увеличению этого показателя способствует процедура расточки цилиндров на специализированном станке. Такая операция позволяет увеличить сечение гильз изнутри при сохранении их правильной геометрии.
Решаясь на расточку, необходимо помнить, что для модернизированных таким образом цилиндров нужны поршни большего диаметра, так как только идеальное совмещение этих деталей обеспечит необходимый уровень компрессии и высокую степень сжатия.
Установка усовершенствованного распределительного вала
Один из самых популярных способов тюнинга двигателя. В отличие от обычных распредвалов, тюнинговые имеют кулачки другой формы – более высокие и широкие. Это позволяют клапанам подниматься выше и находится в открытом состоянии дольше, что способствует подаче большего количества топливно-воздушной смеси.
Существует несколько видов специальных распредвалов:
- Mild Road Cams (для умеренной езды): может быть установлен практически на любом двигателе; улучшает его приемистость и мощность, в некоторых случаях способствует экономии топлива
- Fast Road Cams (для быстрой езды): идеально подходит для скоростных автомобилей; увеличивает мощность ДВС, экономит расход горючего, однако на холостом ходу работает нестабильно
- Competition Cams (спортивные): предназначены для спортивных автомобилей; эффективно повышают мощность двигателя, однако увеличивают расход топлива, обладают неровным холостым ходом и быстро изнашиваются
Спортивные распредвалы практически непригодны для использования в городских условиях, так как их максимальная отдача происходит в области предельных частот вращения двигателя (2000-3000 оборотов).
Тюнинг клапанов двигателя
Клапаны ответственны за циркуляцию воздуха в ДВС. Временем их открытия управляет распределительный вал, а степенью – толкатель.
Наличие острых углов и заусенцев на клапанах препятствует прохождению воздушного потока, поэтому эти элементы должны быть тщательно отполированы. Важно также, чтобы клапаны плотно и без малейших зазоров размещались в посадочных местах.
Увеличить количество поступающего воздуха (а соответственно, и создающейся топливно-воздушной смеси) позволяет расширение впускных отверстий, установка бОльших по размеру клапанов или увеличение их количества (до 16, 20, 24, 32 и т.д.). Последний способ наиболее эффективен, так как при увеличении отверстий и установке больших клапанов скорость воздушного потока на низких оборотах уменьшается, что может негативно отразиться на крутящем моменте.
Установка высококомпрессионных поршней
Такие поршни используются для повышения компрессии в цилиндрах. Они изготавливаются, как правило, из алюминиевого сплава с добавлением кремния. Одно из колец в таких поршнях больше других, а на верхней части имеется выпуклость.
Высококомпрессионные поршни создают большее, по сравнению со стандартными, давление, чем ускоряют процесс сгорания топлива и повышают мощность ДВС. В процессе работы они выдерживают очень большие нагрузки и температуры, поэтому используются в самых современных автомобилях с форсированными двигателями.
Несмотря на высокую износостойкость усовершенствованных поршней им, как и любым другим высоконагруженным деталям, необходима дополнительная защита. С этой задачей прекрасно справляются специальные антифрикционные составы, наносимые на юбки поршней.
MODENGY Для деталей ДВС предотвращает появление задиров на контактирующих поверхностях, защищает детали от негативного влияния экстремально высоких температур, эффективно в условиях «масляного голодания» двигателя.
Покрытие имеет удобную аэрозольную фасовку, отверждается при комнатной температуре за 12 часов.
Перед применением MODENGY для деталей ДВС поверхности обрабатываются Специальным очистителем-активатором, который гарантирует отличную адгезию покрытия и его долговременную устойчивость. Оба средства доступны в одном наборе.
В заводских условиях такое покрытие наносится также на большие поршни.
Уровень компрессии можно увеличить также с помощью шлифовки головки блока цилиндров. При этом прокладка ГБЦ обязательно меняется на специальную, выдерживающую избыточное давление.
Собираясь использовать различные методы повышения компрессии, необходимо помнить, что ее чрезмерные показатели могут привести к детонации и повреждению двигателя. Особенно это актуально для автомобилей с турбонаддувом/
Использование строкер-кита
Многие компании производят уже готовые комплекты для механического тюнинга двигателя (в основном, для американских 8-ми цилиндровых автомобилей). Стандартно они включают поршни, кольца, шатуны, подшипники и коленвал. Использование таких наборов позволяет изменить длину хода поршня, увеличивает крутящий момент и добавляет двигателю 10-15 % объема.
Все детали проходят строжайший контроль качества, имеют больший запас прочности и износостойкости.
Существует несколько базовых вариантов строкер-китов для «низких», «низких-средних» или «средних-высоких» оборотов двигателя.
Установка усовершенствованных элементов топливной системы
Для увеличения мощности двигателя очень важно обеспечить его бОльшим количеством топлива. Это возможно путем доработки топливной системы: установки более мощного насоса, топливной рампы с инжекторами, усовершенствованного топливного регулятора.
Установка дополнительного радиатора
Мощный оттюнингованный двигатель испытывает экстремальные нагрузки и температуры, поэтому требует более совершенной системы охлаждения.
После доработки ДВС крайне желательно заменить основной тосольный радиатор агрегатом большего размера, а также поставить отдельный масляный радиатор.
Установка электрического вентилятора
Стоит отметить, что на современных автомобилях вентиляторы радиатора с механическим приводом практически не используются, их заменяют электрические модели. Система их управления отслеживает температуру двигателя и обеспечивает функционирование механизма охлаждения с помощью бортового компьютера.
Балансировка двигателя – заключительный этап тюнинга
Балансировка двигателя по имеющейся схеме (блюпринтинг) – необходимая при тюнинге ДВС процедура. Она проходит в специально оборудованных мастерских, где проверяется работа распределительного вала, поршней, шатунов, подшипников, маховика. При необходимости настраиваются и изменяются некоторые эксплуатационные параметры деталей.
Доработка силовой установки
Для начала стоит заметить, что практически любой двигатель, не зависимо от вида топлива, на котором он работает, можно форсировать. Если перебрать заводской мотор и учесть все тонкости и нюансы, пропущенные при конвейерной сборке, можно получить прирост мощности в размере 10-20%. Дело в том, что при массовой сборке не применяется индивидуальная настройка и подгонка под каждый агрегат. Задача конвейера в том, что бы мотор попал в установленный диапазон допусков и посадок.
При индивидуальной сборке, учитываются даже самые мелкие погрешности, для достижения максимальных показателей при выходе на форсаж двигателя. Кроме того, меняются детали и узлы на более прочные, способные вынести серьёзные нагрузки.
Минусом метода является значительная цена и необходимость замены других узлов автомобиля (тормозная система, коробка передач и др.).
Дизельные двигатели. Устройство и принцип работы
Все больше появляется на дорогах автомобилей, у которых лишь характерное постукивание из-под капота выдает тип установленного мотора. В данной статье разберем устройство, принцип работы и конструктивные особенности дизельных двигателей.
Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент во всем диапазоне оборотов и более дешевое топливо, делают его предпочтительным вариантом. Современные дизели последних поколений вплотную приблизились к бензиновым моторам по шумности и удельным характеристикам, сохраняя при этом преимущества в экономичности и надежности.
Конструктивные особенности дизельных двигателей
По конструкции дизельный двигатель не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (19-24 единиц против 9-11 у бензинового двигателя). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.
Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800 о С, в камеру сгорания форсунками, под большим давлением (10-30 МПа) впрыскивается топливо, которое почти мгновенно самовоспламеняется.
Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики такого двигателя тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.
К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Стоит отметить, что это относится в большей степени к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
Дизельные двигатели с непосредственным впрыском
Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне.
До недавнего времени непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями организации процесса сгорания, а также повышенными шумом и вибрацией.
В последние годы благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию.
Дизельные двигатели с раздельной камерой сгорания
Наиболее распространенным на легковых автомобилях пока является другой тип дизельного мотора — с раздельной камерой сгорания. В них впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что значительно улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение в этом случае начинается в вихревой камере, а затем продолжается в основной камере сгорания.
При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют подавляющее большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).
Устройство топливной система дизельного двигателя
Важнейшей системой дизеля, определяющей надежность и эффективность его работы, является система топливоподачи. Основная ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.
Главными элементами топливной системы дизеля являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.
ТНВД — топливный насос высокого давления.
ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.
Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.
ТНВД распределительного типа. Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Форсунки дизеля.
Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.
Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.
Топливные фильтры дизеля.
Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.
Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.
Как происходит запуск дизельного двигателя?
Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900 о С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа.
Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30 о С, разумеется, при условии соответствия сезону масла и дизтоплива.
Турбонаддув дизельного двигателя
Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — ‘турбоямы’.
В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя и не превышает обычно 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла.
Подробнее про турбокомпрессор написано в статье: ‘что такое автомобильный турбокомпрессор?’.
Система Common-Rail для дизельного двигателя
Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.
В результате в дизелях с системой Common-Rail расход топлива двигателем сокращается примерно на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора.
Подробнее про систему Комон Рейл, принцип ее работы и устройство, описано в статье: ‘топливная система Common Rail — что это такое?’.
Установка компрессора
Очень эффективный способ поднятия мощности. Многие изначально думают, что установка компрессора и является его – форсированием. Это в корне не верно, как вы уже поняли это комплекс мер.
Однако приводной компрессор (или механический) является важнейшим элементом поднятия производительности. Принцип прост – на автомобиль устанавливается такое оборудование, которое проводится от коленвала. Благодаря нему, можно значительно улучшить крутящий момент двигателя. Про это я постараюсь написать отдельную статью.
Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».
Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, его ресурс существенно меньше ресурса самого двигателя и не превышает 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.
Система Common-Rail. Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.